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The American Statistical Association, the Royal 
Statistical Society, and four other leading sta-
tistical organizations partnered in celebrat-

ing 2013 as the International Year of Statistics. The 
capstone event for this year of celebration was the 
Future of the Statistical Sciences Workshop, held in 
London on November 11 and 12, 2013. This meeting 
brought together more than 100 invited participants 
for two days of lectures and discussions. As well as 
an invited audience who were present for the event, 
the organizers made the lectures are freely avail-
able to the public online at www.statisticsviews.com  
(registration required).

Statistics can be most succinctly described as 
the science of uncertainty. While the words “statis-
tics” and “data” are often used interchangeably by the 
public, statistics actually goes far beyond the mere 
accumulation of data. The role of a statistician is:

•	 To design the acquisition of data in a way 
that minimizes bias and confounding fac-
tors and maximizes information content 

•	 To verify the quality of the data after it is  
collected 

•	 To analyze data in a way that produces  
insight or information to support decision-
making

These processes always take into explicit account 
the stochastic uncertainties present in any real-world 
measuring process, as well as the systematic uncer-
tainties that may be introduced by the experimental 
design. This recognition is an inherent characteristic 
of statistics, and this is why we describe it as the “sci-
ence of uncertainty,” rather than the “science of data.” 

Data are ubiquitous in 21st-century society: 
They pervade our science, our government, and 
our commerce. For this reason, statisticians can 
point to many ways in which their work has made a  
difference to the rest of the world. However, the very 
usefulness of statistics has worked in some ways as 
an obstacle to public recognition. Scientists and ex-
ecutives tend to think of statistics as infrastructure, 
and like other kinds of infrastructure, it does not get 
enough credit for the role it plays. Statisticians, with 
some prominent exceptions, also have been unwill-
ing or unable to communicate to the rest of the world 
the value (and excitement) of their work.

This report, therefore, begins with something 
that was mostly absent from the London workshop: 
seven case studies of past “success stories” in statistics, 
which in all cases have continued to the present day. 

These success stories are certainly not exhaustive—
many others could have been told—but it is hoped 
that they are at least representative. They include:

•	 The development of the randomized con-
trolled trial methodology and appropriate 
methods for evaluating such trials, which are 
a required part of the drug development pro-
cess in many countries.

•	 The application of “Bayesian statistics” 
to image processing, object recognition, 
speech recognition, and even mundane ap-
plications such as spell-checking.

•	 The explosive spread of “Markov chain 
Monte Carlo” methods, used in statistical 
physics, population modeling, and numer-
ous other applications to simulate uncer-
tainties that are not distributed according 
to one of the simple textbook models (such 
as the “bell-shaped curve”).

•	 The involvement of statisticians in many 
high-profile court cases over the years. When 
a defendant is accused of a crime because 
of the extraordinary unlikelihood of some 
chain of events, it often falls to statisticians to 
determine whether these claims hold water.

•	 The discovery through statistical methods 
of “biomarkers”—genes that confer an in-
creased or decreased risk of certain kinds  
of cancer.

•	 A method called “kriging” that enables sci-
entists to interpolate a smooth distribution 
of some quantity of interest from sparse 
measurements. Application fields include 
mining, meteorology, agriculture, and as-
tronomy.

•	 The rise in recent years of “analytics” in 
sports and politics. In some cases, the meth-
ods involved are not particularly novel, but 
what is new is the recognition by stakehold-
ers (sports managers and politicians) of the 
value that objective statistical analysis can 
add to their data.

Undoubtedly the greatest challenge and oppor-
tunity that confronts today’s statisticians is the rise 
of Big Data—databases on the human genome, the 
human brain, Internet commerce, or social networks 
(to name a few) that dwarf in size any databases 
statisticians encountered in the past. Big Data is a  
challenge for several reasons:

EXECUTIVE SUMMARY
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•	 Problems of scale. Many popular algorithms 
for statistical analysis do not scale up very 
well and run hopelessly slowly on terabyte-
scale data sets. Statisticians either need to 
improve the algorithms or design new ones 
that trade off theoretical accuracy for speed.

•	 Different kinds of data. Big Data are not only 
big, they are complex and they come in dif-
ferent forms from what statisticians are 
used to, for instance images or networks.

•	 The “look-everywhere effect.” As scientists 
move from a hypothesis-driven to a data-
driven approach, the number of spurious 
findings (e.g., genes that appear to be con-
nected to a disease but really aren’t) is guar-
anteed to increase, unless specific precau-
tions are taken.

•	 Privacy and confidentiality. This is probably 
the area of greatest public concern about 
Big Data, and statisticians cannot afford to 
ignore it. Data can be anonymized to protect 
personal information, but there is no such 
thing as perfect security. 

•	 Reinventing the wheel. Some of the col-
lectors of Big Data—notably, web com-
panies—may not realize that statisticians 
have generations of experience at getting 
information out of data, as well as avoid-
ing common fallacies. Some statisticians 
resent the new term “data science.” Others 
feel we should accept the reality that “data 
science” is here and focus on ensuring that 
it includes training in statistics.

Big Data was not the only current trend dis-
cussed at the London meeting, and indeed there was 
a minority sentiment that it is an overhyped topic 
that will eventually fade. Other topics that were dis-
cussed include:

•	 The reproducibility of scientific research. 
Opinions vary widely on the extent of the 
problem, but many “discoveries” that make 
it into print are undoubtedly spurious. Sev-
eral major scientific journals are requiring 
or encouraging authors to document their 
statistical methods in a way that would al-
low others to reproduce the analysis.

•	 Updates to the randomized controlled trial. 
The traditional RCT is expensive and lacks 
flexibility. “Adaptive designs” and “SMART 
trials” are two modifications that have given 

promising results, but work still needs to be 
done to convince clinicians that they can 
trust innovative methods in place of the 
tried-and-true RCT.

•	 Statistics of climate change. This is one area 
of science that is begging for more statisti-
cians. Climate models do not explicitly in-
corporate uncertainty, so the uncertainty 
has to be simulated by running them re-
peatedly with slightly different conditions.

•	 Statistics in other new venues. For instance, 
one talk explained how new data capture 
methods and statistical analysis are improv-
ing (or will improve) our understanding of 
the public diet. Another participant described 
how the United Nations is experimenting for 
the first time with probabilistic, rather than 
deterministic, population projections.

•	 Communication and visualization. The In-
ternet and multimedia give statisticians 
new opportunities to take their work di-
rectly to the public. Role models include 
Nate Silver, Andrew Gelman, Hans Rosling, 
and Mark Hansen (two of whom attended 
the workshop).

•	 Education. A multifaceted topic, this was 
discussed a great deal but without any real 
sense of consensus. Most participants at the 
meeting seemed to agree that the curricu-
lum needs to be re-evaluated and perhaps 
updated to make graduates more competi-
tive in the workplace. Opinions varied as to 
whether something needs to be sacrificed to 
make way for more computer science–type 
material, and if so, what should be sacrificed.

•	 Professional rewards. The promotion and 
tenure system needs scrutiny to ensure non-
traditional contributions such as writing a 
widely used piece of statistical software are 
appropriately valued. The unofficial hierarchy 
of journals, in which theoretical journals are 
more prestigious than applied ones and sta-
tistical journals count for more than subject-
matter journals, is also probably outmoded.

In sum, the view of statistics that emerged from 
the London workshop was one of a field that, after 
three centuries, is as healthy as it ever has been, with 
robust growth in student enrollment, abundant new 
sources of data, and challenging problems to solve 
over the next century.  ❖



6    Statistics and Science – A Report of the London Workshop on the Future of Statistical Sciences

INTRODUCTION

In 2013, six professional societies declared an 
International Year of Statistics to celebrate the 
multifaceted role of statistics in contemporary 

society, to raise public awareness of statistics, and to 
promote thinking about the future of the discipline. 
The major sponsors of the yearlong celebration were 
the American Statistical Association, the Royal  
Statistical Society, the Bernoulli Society, the Institute 
of Mathematical Statistics, the International Biomet-
ric Society, and the International Statistical Institute. 
In addition to these six, more than 2,300 organiza-
tions from 128 countries participated in the Interna-
tional Year of Statistics.

The year 2013 was a very appropriate one for a 
celebration of statistics. It was the 300th anniversary 
of Jacob Bernoulli’s Ars conjectandi (Art of Conjec-
turing) and the 250th anniversary of Thomas Bayes’ 
“An Essay Towards Solving a Problem in the Doctrine 
of Chances.” The first of these papers helped lay the 
groundwork for the theory of probability. The sec-
ond, little noticed in its time, eventually spawned an 
alternative approach to probabilistic reasoning that 
has truly come to fruition in the computer age. In 
very different ways, Bernoulli and Bayes recognized 
that uncertainty is subject to mathematical rules and 
rational analysis. Nearly all research in science today 
requires the management and calculation of uncer-
tainty, and for this reason statistics—the science of 
uncertainty—has become a crucial partner for mod-
ern science.

Statistics has, for example, contributed the idea 
of the randomized controlled trial, an experimental 
technique that is universal today in pharmaceutical 
and biomedical research and many other areas of 
science. Statistical methods underlie many applica-
tions of machine reasoning, such as facial recogni-
tion algorithms. Statistical analyses have been used 
in court on numerous occasions to assess whether 
a certain combination of events is incriminating or 
could be just a coincidence. New statistical methods 
have been developed to interpret data on the human 

genome and to detect biomarkers that might indi-
cate a higher risk for certain kinds of cancer. Finally, 
sound statistical reasoning is transforming the sports 
that we play and the elections we vote in. All of these 
statistical “success stories,” and more, are discussed 
in detail later in this report.

The International Year of Statistics came at a 
time when the subject of statistics itself stood at a 
crossroads. Some of its most impressive achieve-
ments in the 20th century had to do with extract-
ing as much information as possible from relatively 
small amounts of data—for example, predicting an 
election based on a survey of a few thousand people, 
or evaluating a new medical treatment based on a 
trial with a few hundred patients. 

While these types of applications will continue 
to be important, there is a new game in town. We live 
in the era of Big Data. Companies such as Google 
or Facebook gather enormous amounts of informa-
tion about their users or subscribers. They constantly 
run experiments on, for example, how a page’s lay-
out affects the likelihood that a user will click on a 
particular advertisement. These experiments have 
millions, instead of hundreds, of participants, a scale 
that was previously inconceivable in social science 
research. In medicine, the Human Genome Project 
has given biologists access to an immense amount of 
information about a person’s genetic makeup. Before 
Big Data, doctors had to base their treatments on a 
relatively coarse classification of their patients by age 
group, sex, symptoms, etc. Research studies treated 
individual variations within these large categories 
mostly as “noise.” Now doctors have the prospect 
of being able to treat every patient uniquely, based 
on his or her DNA. Statistics and statisticians are re-
quired to put all these data on individual genomes to 
effective use. 

The rise of Big Data has forced the field to con-
front a question of its own identity. The companies 
that work with Big Data are hiring people they call 
“data scientists.” The exact meaning of this term is 
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a matter of some debate; it seems like a hybrid of a 
computer scientist and a statistician. The creation of 
this new job category brings both opportunity and 
risk to the statistics community. The value that stat-
isticians can bring to the enterprise is their ability to 
ask and to answer such questions as these: Are the 
data representative? What is the nature of the uncer-
tainty? It may be an uphill battle even to convince 
the owners of Big Data that their data are subject to 
uncertainty and, more importantly, bias. 

On the other hand, it is imperative for statisti-
cians not to be such purists that they miss the im-
portant scientific developments of the 21st century. 
“Data science” will undoubtedly be somewhat dif-
ferent from the discipline that statisticians are used 
to. Perhaps statisticians will have to embrace a new 
identity. Alternatively, they might have to accept the 
idea of a more fragmented discipline in which stan-
dard practices and core knowledge differ from one 
branch to another. 

These developments formed the background 
for the Future of the Statistical Sciences Workshop, 
which was held on November 11 and 12, 2013, at 
the offices of the Royal Statistical Society in London. 
More than 100 statisticians, hailing from locations 
from Singapore to Berkeley and South Africa to  
Norway, attended this invitation-only event, the 
capstone of the International Year of Statistics. The 
discussions from the workshop comprise the source 
material for Sections 2 and 3 of this document.

Unlike the workshop, this report is intended pri-
marily for people who are not experts in statistics. 
We intend it as a resource for students who might 
be interested in studying statistics and would like to 
know something about the field and where it is going, 
for policymakers who would like to understand the 
value that statistics offers to society, and for people 
in the general public who would like to learn more 
about this often misunderstood field. To that end, we 
have provided in Section 1 some examples of the use 

of statistics in modern society. These examples are 
likely to be familiar to most statisticians, but may be 
unfamiliar to other readers.

One common misconception about statisti-
cians is that they are mere data collectors, or “num-
ber crunchers.” That is almost the opposite of the 
truth. Often, the people who come to a statistician 
for help—whether they be scientists, CEOs, or public 
servants—either can collect the data themselves or 
have already collected it. The mission of the statisti-
cian is to work with the scientists to ensure that the 
data will be collected using the optimal method (free 
from bias and confounding). Then the statistician 
extracts meaning from the data, so that the scien-
tists can understand the results of their experiments 
and the CEOs and public servants can make well-
informed decisions.

Another misperception, which is unfortunately 
all too common, is that the statistician is a person 
brought in to wave a magic wand and make the data 
say what the experimenter wants them to say. Statis-
ticians provide researchers the tools to declare com-
parisons “statistically significant” or not, typically 
with the implicit understanding that statistically 
significant comparisons will be viewed as real and 
non-significant comparisons will be tossed aside. 
When applied in this way, statistics becomes a ritual 
to avoid thinking about uncertainty, which is again 
the opposite of its original purpose.

Ideally, statisticians should provide concepts 
and methods to learn about the world and help peo-
ple make decisions in the face of uncertainty. If any-
thing is certain about the future, it is that the world 
will continue to need this kind of “honest broker.” 
It remains in question whether statisticians will be 
able to position themselves not as number crunch-
ers or as practitioners of an arcane ritual, but as data 
explorers, data diagnosticians, data detectives, and 
ultimately as answer providers.  ❖
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In this part of the report, we present seven case 
studies of the uses of statistics in the past and 
present. We do not intend these examples to be 

exhaustive. We intend them primarily as educational 
examples for readers who would like to know, “What 
is statistics good for?” Also, we intend these case 
studies to help frame the discussion in Sections 2 and 
3 of current trends and future challenges in statistics.

1.1  Randomized Controlled Trials
Every new pharmaceutical product in the United 
States and many other countries goes through sever-
al rounds of statistical scrutiny before it can reach the 
marketplace. The prototypical type of study is called 
a randomized controlled trial, an experimental de-
sign that emerged from Sir Ronald Fisher’s research 
nearly a century ago.

In 1919, the Cambridge-educated geneticist and 
statistician accepted a position at the Rothamsted 
Experimental Station, an agricultural research facil-
ity in Hertfordshire, England. While working there, 
he clarified many of scientists’ previously haphazard 
ideas about experimental design, and his ideas had 
repercussions that went far beyond agronomy.

Here is a typical problem of the type Fisher ana-
lyzed: A researcher wants to know if a new fertilizer 
makes corn more productive. He could compare a 
sample of plants that have been given the fertilizer (the 
“treatment” group) with plants that have not (the “con-
trol” group). This is a controlled trial. But if the treat-
ment group appeared more productive, a skeptic could 
argue that those plants had come from more vigorous 
seeds, or had been given better growing conditions. 

SECTION 1. 
How Statistics Is Used in the 
Modern World: Case Studies

To anticipate such objections, the treatment 
and control group should be made as similar to each 
other in every possible way. But how can one enforce 
this similarity? What is to keep the experimenter 
from inadvertently or deliberately stacking the deck? 
Fisher’s answer was revolutionary and far from obvi-
ous: randomization. If the treatment (the fertilizer) is 
given to random plants in random plots, the experi-
menter cannot affect the results with his own bias. 

Randomization seems counterintuitive at first, 
because there is no attempt to match the treatment 
group and control group. But in fact, it exploits the 
laws of probability. If you flip a coin 100 times, you 
are much more likely to get a roughly even split 
of heads and tails than you are to get all heads, or 
even 75 percent heads. Similarly, in a controlled ex-
periment, randomness is a rough (though not exact) 
guarantee of fairness.

Besides eliminating bias and approximately 
matching the treatment and control groups, the ran-
domized controlled trial (RCT) design has one more 
advantage. It makes the source of uncertainty explicit 
so that it can be modeled mathematically and used 
in the analysis. If the uncertainty lay in the quality of 
the seed or the soil, it would be difficult for an experi-
menter to model. But in an RCT, the randomization 
procedure itself is the source of uncertainty. In 100 
flips of a coin, it’s easy to say what is a reasonable 
and an unreasonable number of heads to expect. As 
a result, the researcher can quantify the uncertainty. 
When assessing whether the fertilizer works, he can 
calculate a statistical measure (a “p-value”) that re-
flects the strength of the evidence that it does. (See 
sidebar, “Statisticians Were Here.” Also see §1.4 for 
some downsides to the uncritical use of p-values.) 
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In medicine, the use of controlled trials, and 
even randomization, goes back a long way. James 
Lind’s experiments on the treatment of scurvy in 
1747, which showed that lemons and limes were the 
most effective treatment out of six alternatives, are 
often cited as the first controlled trials in history. 
In 1835, the pharmacists of Nuremberg, Germany, 
added the idea of randomization in an experiment 
to tell whether a homeopathic “remedy” could be 
distinguished from a placebo. However, these ex-
periments did not yet have Fisher’s mathematical 
framework to quantify the uncertainty.

It was only after World War II that Austin 
Bradford Hill, a British epidemiologist, conducted 
the first modern RCT in medicine. In 1948, he 
demonstrated overwhelming evidence that the 
newly discovered antibiotic vancomycin was effec-
tive against tuberculosis. His study was a watershed 
moment—for medicine and for statistics. One of the 
discoverers of vancomycin won the Nobel Prize in 
1952. Tuberculosis, one of the greatest scourges of 
the 19th and early 20th centuries, suddenly became 
a manageable disease. And RCTs came into great de-
mand, as the success of “wonder drugs” like penicil-
lin and vancomycin made the development of new 
pharmaceuticals into a highly lucrative business. 

Some non-statistical factors also contributed 
to the ascendance of RCTs in medical research. 
In 1937, more than 100 people died from a new 
“wonder drug,” sulfanilamide, not because of the 
drug, but because of the solvent in which it was 
suspended. This tragedy motivated the Food, Drug, 
and Cosmetic Act, passed in 1938, which required 
drug manufacturers to provide evidence of safety 
to the Food and Drug Administration (FDA). In 

1961, the public outcry over thalidomide (an experi-
mental drug that was shown to cause severe birth de-
fects) led to the passage of the Kefauver-Harris Drug  
Amendment, which required “adequate and well- 
controlled studies” to establish effectiveness and safe-
ty for new drugs for the first time. These studies are  
often, though not always, randomized.

If there is any problem with the RCT, it has been 
too successful, to the point of becoming a straitjack-
et. “It was one of the greatest inventions in medical 
history,” says Don Berry of MD Anderson Cancer 
Center. “The only problem was that people didn’t 
want to tinker with it.”

During the AIDS epidemic of the 1980s, RCTs 
came under fire for being too slow and too insen-
sitive to patients’ needs. The agitation of AIDS ac-
tivists led to certain reforms such as easier access to 
experimental drugs and the use of “surrogate end-
points” (such as improved T-cell counts) that could 
be used as evidence of effectiveness. These surrogates 
themselves had to be investigated statistically. Other 
innovations include the use of “historical controls,” 
interim analysis (i.e., analysis of data while the study 
is still in progress) and early termination of studies in 
which the treatment has either an extremely positive 
or an extremely negative effect. Thus, the RCT does 
not have to be a straitjacket. However, the involve-
ment of statisticians has become even more important 
to ensure that such modifications do not compromise 
the trial’s scientific validity.

Another new challenge to traditional RCTs is 
personalized medicine. Doctors realize now that 
cancer is not one disease, but has many subtypes (see 
§5), each potentially requiring a different treatment. 
Thanks to genomics, doctors will increasingly be able 
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to distinguish different types of patients, as well. The 
conventional RCT with hundreds or thousands of 
patients may become simply impossible. There may 
not even be a thousand patients in the world with 
cancer subtype A and genetic markers B, C, and D. 
Section 3 will discuss one new approach (adaptive 
designs) that will enable researchers to zero in on ef-
fective treatments for smaller populations. It remains 
to be seen whether such methods will achieve the 
level of acceptance that traditional RCTs have.

1.2 The Bayesian Paradigm and  
Image Processing
For many years, the field of statistics has had two 
philosophical camps with different answers to a fun-
damental question: What does “probability” mean? 
The camps are known as the “frequentists” and the 
“Bayesians.” The debate is not merely academic, be-
cause different viewpoints on this question lead to 
different methodologies. However, in recent years, 
the controversy has diminished and statisticians have 
come to realize that both viewpoints can be useful in 
different contexts. 

In brief, the frequentist viewpoint is that a prob-
ability reflects how often a particular outcome will be 
observed in repeated trials of the same experiment. 
The language of the frequentists pervades statistical 
textbooks; the examples, such as drawing balls from 
an urn or throwing dice, are ideal situations in which 
the same procedure can be repeated many times with 
uncertain results. The frequentist paradigm—devel-
oped by early pioneers such as Fisher, Jerzy Neyman, 
and Karl Pearson—is reflected in the classical design 
of clinical trials (§1), where the results are phrased in 
terms of what would happen if the experiment were 
repeated many times.

The Bayesian philosophy, named after the 
Reverend Thomas Bayes (see Introduction), ap-
plies the mathematics of probability more gener-
ally, not just to long-run frequencies, but also to the  

probabilities of unique events such as the “probabil-
ity that candidate A will win the election.” Often, the 
Bayesian view of probability is described as a “de-
gree of belief ” in a statement, but Andrew Gelman, a 
Bayesian statistician, has argued that this interpreta-
tion is in no way obligatory. A Bayesian statistician 
is free to interpret probability in whatever way best 
suits the problem—as a frequency, as a degree of 
belief, or simply as a function that obeys the math-
ematical rules of probability.

Some recent work in cognitive psychology has 
drawn interesting connections between frequen-
tist and Bayesian ideas. From one direction, Josh  
Tenenbaum, Tom Griffiths, and others have had 
striking success modeling human inference and 
decisionmaking as being approximately Bayesian. 
From the other side, Gerd Gigerenzer has demon-
strated that people understand uncertainty much 
better when framed as frequencies, rather than prob-
abilities. Various probability problems become much 
less confusing for people when the probabilities are 
reframed as frequencies (e.g., 85 out of 100, rather 
than a probability of 85%). 

Bayesian statistics takes its name from Bayes’ 
theorem, which is a rule for updating our belief in a 
hypothesis as we collect new evidence. One version 
of it can be stated as follows:

Posterior odds = prior odds × likelihood ratio.

A good example of Bayes’s rule is provided by 
spell-checking programs. Suppose, for instance, a 
user types the word “radom” and the computer has 
to decide whether she meant to type “random” or 
“Radom,” the city in Poland. Consulting the Google 
language database, the computer determines that the 
word “random” appears 200 times as often as “Ra-
dom” in all documents. In the absence of any other 
information, the “prior odds” are 200:1 in favor of 
“random.” However, a spell-check program that sim-
ply defaulted to the most common word all the time 
would change every word to “the.” So the prior odds 
have to be modified by the evidence of what the typ-
ist actually typed. According to Google’s model of 
spelling errors, it is 500 times more likely that typists 
will type “radom” if the word they meant to type is 
“Radom” (which they will do with probability 0.975) 
than if the word is “random” (probability 0.00195). So 
the likelihood ratio is 1/500, and the posterior odds 
become (200/1)(1/500), or 2:5. Thus the spell checker 
will not auto-correct the word. On the other hand, 
if the spell-checker knew that the word came from a 
document on statistics, the prior odds in favor of “ran-
dom” would go up and the spell-checker would then 
auto-correct the word. Or if the typist were sloppy, the 
likelihood ratio of an error versus a correct spelling 
would go up, and again the posterior odds would shift 
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mean? The camps are known as the “frequentists” 
and the “Bayesians.”
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in favor of “random.” This shows how easily Bayes’ 
rule incorporates new information.

Humans update their beliefs every time they look 
at something. “Perceptions are predictive, never en-
tirely certain, hypotheses of what may be there,” wrote 
Richard Gregory, an experimental psychologist and 
expert on visual illusions. Ordinarily, we assume that 
the source of illumination in a scene is at the top. We 
assume that solid objects are more likely to be convex 
than concave. These are prior beliefs, which visual illu-
sions exploit to create images that confuse us. But most 
of the time, our hypotheses serve us well. Images are in-
herently ambiguous—they are projections of a three-di-
mensional world onto a two-dimensional retina—and 
hence we need assumptions to make sense of what we 
see. We constantly refine or discard them as we get new 
visual or sensory data. Our unconscious hypotheses 
allow us to separate foreground from background, to 
read a blurry sign in the distance, to recognize faces—
all tasks that are quite difficult for a computer.

However, recent research has helped machines 
figure out more about the content of an image by us-
ing Bayesian reasoning. For example, many digital 
cameras have the ability to “lock onto” faces. They 
will draw a little rectangle around anything that the 
camera’s “brain” thinks is likely to be a face. The tech-
nology involved is surprisingly recent—it was in-
vented by Paul Viola and Michael Jones in 2001—yet 
it has become nearly ubiquitous. 

For another example, the Microsoft Kinect game 
player uses Bayesian algorithms to track a user’s mo-
tions. It is programmed to make certain assumptions 
about how images are generated, just as humans do: 
Scenes contain objects, objects have textures, textures 
reflect light in certain ways. These causal relation-
ships constrain our prior hypotheses about a scene. 
They do the same thing when programmed into a 
computer. When a new image comes in, the software 
can filter it through this network of assumed rela-
tionships (called a “Bayesian network”) and generate 
the most likely hypothesis about what is foreground 
and what is background, where your hands are, and 
which hand is connected to which shoulder. 

Of course, this research raises the question of 
what kinds of prior hypotheses are imbedded in our 
own brains and how humans arrive at them. It’s rea-
sonable to expect that such questions will drive col-
laboration between statisticians and psychologists 
for a long time to come.

1.3 The Markov Chain Monte  
Carlo Revolution
Statistics was a multidisciplinary science from 
the very beginning, long before that concept be-
came fashionable. The same techniques developed 
to analyze data in one application are very often  

applicable in numerous other situations. One of the 
best examples of this phenomenon in recent years 
is the application of Markov Chain Monte Carlo 
(MCMC) methods. While MCMC was initially in-
vented by statistical physicists who were working on 
the hydrogen bomb, it has since been applied in set-
tings as diverse as image analysis, political science, 
and digital humanities. 

Markov Chain Monte Carlo is essentially a 
method for taking random samples from an unfath-
omably large and complex probability distribution. 
For a simple example, a prison official once brought 
statistician Persi Diaconis a message between two 
prisoners that had been intercepted. The message 
was written in a code that did not resemble the  
English alphabet and the guards had not been able 
to decipher it. Diaconis gave it to a student as a chal-
lenge. Remarkably, the student succeeded on the first 
try, using an MCMC algorithm.

Here’s how it worked. The “large probability dis-
tribution” describes all possible ways that the alpha-
bet could be encoded into 26 symbols. Not all ways 
are equally likely. If one proposed decryption pro-
duces a word with the letters “QA” adjacent to one 
another, this is a highly implausible decryption. On 
the other hand, a letter combination one expects to 
see often is “TH,” so a decryption that produces a lot 
of these is quite plausible.

The algorithm takes a random walk through this 
space of all possible decryptions. It starts with a ran-
domly chosen decryption. Then, at each step, it con-
siders one possible revision. If the symbol for “A” is 
changed to “U,” the “QAs” would become much more 
plausible “QUs.” Each time it considers a change, the 
MCMC algorithm computes the plausibility score of 
the new decryption. If the new decryption is more 
plausible than the old one, the algorithm makes that 
change. If not, it will probably, but not necessarily, 
reject the change. Sometimes, it will accept a change 
that is a priori less likely. This keeps the algorithm 
from becoming “trapped” in a dead end. Like a hu-
man detective, it sometimes needs to try out alterna-
tive hypotheses that seem less plausible at first.

Eventually, after many iterations, MCMC will 
arrive at a random sample from the space of plausible 
decryptions. In the case of the prisoner’s code there 
is only one plausible decryption, so the “random 
sample” is the solution. Diaconis and his student 
knew they had found it when, after a few thousand 
steps of the MCMC algorithm, the computer came 
up with the following decryption: “To bat-rb. Con 
todo mi respeto. I was sitting down playing chess 
with danny…”

While secret messages between prisoners are a 
rather unusual application of MCMC, the method 
has a mind-boggling array of other uses. The original 
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algorithm was designed in the late 1940s by Nicholas 
Metropolis, Stanislaw Ulam, Edward Teller, and oth-
ers to simulate the motion of neutrons in an implod-
ing hydrogen bomb. This motion is essentially ran-
dom. However, “random” does not mean “arbitrary.” 
The neutrons obey physical laws, and this makes 
certain outcomes much more likely than others. The 
probability space of all plausible neutron paths is far 
too large to store in a computer, but Metropolis’ algo-
rithm enables the computer to pick random plausible 
paths and thereby predict how the bomb will behave.

In a completely different application, MCMC has 
been used to analyze models of how politicians vote 
on proposed legislation or how U.S. Supreme Court 
justices vote on cases that come before them. The 
second example is of particular interest because the 
justices typically say very little in public about their 
political viewpoints after their confirmation hearings, 
yet their ideologies can and do change quite a bit dur-
ing the course of their careers. Their votes are the only 
indicator of these changes. While political pundits are 
always eager to “read the tea leaves,” their analysis typ-
ically lacks objectivity and quantitative rigor. 

By contrast, the statistical approach produces 
an explicit measure of where each justice lies along 
a liberal-conservative spectrum; the changes can 
be graphed over time to produce an immediately 
understandable picture of each justice’s career. The 
graphs make it easy to spot the court’s “median vot-
er,” who has historically been the swing vote in many 
closely divided cases. The swing vote for many years 
was Byron White; then it was Sandra Day O’Connor; 
and, in recent years, it has been Anthony Kennedy. 
Admittedly, this is not too surprising for Supreme 
Court buffs, but what’s remarkable is that a computer 
equipped with this method can “figure it out” with 
no prior knowledge of politics or the legal details of 
the cases involved. 

In this example, MCMC is used to support an 
explicitly Bayesian analysis. One technical problem 
with Bayes’ rule is that the likelihood ratio (discussed 
in §1.2) is often very difficult to calculate, because it 
involves summing (or in mathematical jargon, “inte-
grating”) over an inordinately large number of pos-
sibilities. This is exactly the type of problem MCMC 
was invented to address. Thus, as a practical matter, 
MCMC together with large computers have made it 
much easier to be a Bayesian. 

“The past 15 years have seen something of a rev-
olution in statistics,” wrote Simon Jackman (in 2004), 
a political scientist who has studied models of the 
Supreme Court. “The popularization and widespread 
adoption of MCMC algorithms mean that models 
and data long relegated to the ‘too-hard’ basket are 
now being analyzed.”

Section 1. How Statistics Is Used in the Modern World: Case Studies

Data Visualization and Communication
Several speakers at the London workshop touched on issues of the pub-
lic perception of statistics and the responsibility of professional statis-
ticians to communicate their work effectively. One thought-provoking 
perspective was given by Mark Hansen, a statistician who is now a pro-
fessor of journalism at Columbia University. Hansen showed images of 
some of his art installations that are based on data and statistics. An 
example is the permanent exhibit “Moveable Type,” in the lobby of The 
New York Times tower, in which 560 screens display continually chang-
ing snippets of text culled algorithmically from the Times article data-
base. This is “communicating statistics” in a form that is more poetic 
than instrumental: The viewer is provided no explanations, but is pre-
sented a view of the newspaper as “data,” decomposed and recombined.

David Spiegelhalter spoke about the challenges of explaining risk 
and uncertainty to the public. Some principles are well established. For 
example, relative risk (Behavior X will increase your risk of cancer by 
50 percent) is perceived differently from absolute risk (Behavior X will 
change your lifetime risk of cancer from 2 percent to 3 percent). The for-
mer sounds more alarming, while the latter sounds like something that 
people might be willing to live with. Statistical jargon can be a barrier to 
communication. The public does not understand what a “hazard ratio” 
is. Spiegelhalter suggested replacing this with a number that people can 
relate to directly: Behavior X is equivalent to being 8 years older. If the 
case against smoking had been presented this way, would people per-
haps have been quicker to grasp the consequences? Also, visual commu-
nication can be very effective. Psychologist Angela Fagerlin found that 
patients asked to choose between two treatments were susceptible to 
misleading anecdotes (i.e., Treatment A worked for this patient), even if 
they had been given statistics that showed the opposite. However, if the 
statistics were presented visually, the patients retained the information 
and were effectively “immune” to the misleading anecdote.

Visualization is also central to the work of Hans Rosling (who was 
not at the London meeting), a Swedish statistician and doctor who has 
become a YouTube and media star with his multimedia presentations 
about world demographics. In 2012, he was named as one of Time’s 100 
most influential people. Rosling makes the seemingly dry subject of de-
mographics fascinating with colorful graphics and vivid storytelling. As 
Rosling said on the BBC program The Joy of Stats, “Having the data is 
not enough. I need to show it in a way that people enjoy and under-
stand.” Many other statisticians could learn from his example. For better 
or for worse, a good visualization is much more convincing to the public 
than a technically correct report that is full of jargon and numbers. (See, 
for example, his TED talk at www.ted.com/talks/hans_rosling_shows_
the_best_stats_you_ve_ever_seen.) 
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1.4 Statistics in Court 
Over a 12-year period, from 1984–1995, the Bris-
tol Royal Infirmary in England had an unusually 
high rate of deaths among infants who underwent 
open-heart surgery. As early as 1988, an anesthetist 
complained about operations taking too long, which 
put the patients at greater risk for death or medical 
complications. However, it took the death of a baby 
on the operating table in January 1995 to turn the “ 
Bristol baby case” into a national scandal.

From 1998 to 2001, the British government 
conducted an official inquiry that eventually cost 14 
million pounds and produced a 500-page report. It 
found systemic failures at Bristol that went beyond the 
poor performance of one or two surgeons. A number 
of major changes came as a result of the investigation. 
Data on the performance of individual surgeons are 
now publicly available; new standards were set for in-
forming patients about risks and benefits; and Britain 
formed a permanent healthcare commission, charged 
with overseeing the quality of care in the National 
Health Service and at private clinics. 

A key ingredient in the report was a statistical 
estimate of the number of “excess” deaths that had 
taken place at Bristol. This was difficult to determine, 
not only because the death rate was subject to large 
random fluctuations, but also because it was impos-
sible to tell from case records whether a child’s death 
had been caused by surgery or by other factors. On 
top of that, different patients may have had different 
degrees of risk. The hospital could have just been un-
lucky to have a run of sicker babies. Finally, the avail-
able data, both at Bristol and at other hospitals, came 
from various sources and had uneven quality.

In short, the count of excess deaths was fraught 
with statistical difficulties. Nevertheless, controlling 
for factors like the patient’s age, the type of operation, 
and the year it was performed, the statisticians esti-
mated that 12 to 34 (out of 41) infant deaths between 
1991 and 1995 were excess deaths. We’ll never know 
which babies would have survived at another hos-
pital, but we can confidently say that some of them 
would have.

David Spiegelhalter, the lead statistician in the 
Bristol inquiry, was soon called upon in connection 
with another, even grimmer, case. A general prac-
titioner named Harold Shipman was convicted in 
2000 of murdering 15 elderly women by giving them 
overdoses of opiates. No statistics were involved in 
this conviction; there was plenty of other evidence, 
including a fabricated will in which one of the pa-
tients left her entire estate to him. However, a sub-
sequent inquiry concluded that Shipman had likely 
killed at least 215 patients, almost all of them elder-
ly but otherwise in good health, dating all the way 

back to 1971. This staggering discovery begged the 
question: Couldn’t anything have been done sooner? 
Couldn’t somebody have seen that the mortality rate 
of this doctor’s patients was unacceptably high?

The same question had arisen after the Bristol 
case. To answer it, Spiegelhalter adapted sequential 
analysis techniques that were developed in World 
War II to monitor industrial processes, such as mu-
nitions production. He concluded that, had the data 
been available and had the right statistical methods 
been in place, Shipman’s practice could have been 
identified as suspicious long before 1998, when he 
was finally caught.

However, it is important to use an abundance of 
caution when extrapolating from statistics to malfea-
sance. This was the salient lesson of another case that 
received widespread media attention, the case of the 
Dutch nurse Lucia de Berk.

The bizarre case of de Berk started in similar 
fashion to the Bristol baby scandal—with the un-
expected death of one infant, named Amber, on  
September 4, 2001, at the Juliana Children’s Hospital 
in The Hague. De Berk was a nurse on duty at the 
time. Some of her co-workers had noticed previously 
that she had been on duty during a suspiciously large 
number of unanticipated patient deaths, or “inci-
dents.” The hospital director investigated the records 
of two previous wards she had worked in and noticed 
that there had been several incidents there as well. 
The hospital reported the evidence to the police, al-
leging that de Berk had committed five murders and 
five attempted murders.

The human brain is unfortunately quite prone 
to seeing patterns where there is only randomness. 
For example, if you shake up a jar of jelly beans of 
different colors, you will likely see surprisingly large 
clumps of beans of the same color. Before concluding 
that the beans of the same color are stuck together, 
or before concluding that the cluster of deaths on de 
Berk’s watch were related, one should first do a care-
ful statistical analysis to see whether such a cluster 
could be explained by chance.

Instead, the police consulted a lawyer who was 
not a professional statistician and who performed a 
very shoddy analysis. He claimed that there was only 
1 chance in 342 million that so many deaths would 
have happened during de Berk’s shifts by chance 
alone. Though he later backed away from the claim, 
the number 342 million took on a life of its own. 
De Berk was convicted of four counts of murder in 
2003 and sentenced to life in prison. The conviction 
was upheld by the Dutch Supreme Court in 2006, 
although the court took pains to state that the ver-
dict was based on physical evidence and not based 
on statistical reasoning—most likely because serious 
doubts had already arisen about the latter.
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Statisticians Richard Gill and Willem van Zwet 
pointed out numerous statistical flaws behind the 
notorious “1 in 342 million,” which amounted (in 
Gill’s words) to an “abuse of every basic rule in the 
statistics textbook.” One flaw was technical, but bears 
mentioning because it is such a common misconcep-
tion. The “p-values” (see §1.1) that are obtained in 
conventional significance tests are not probabilities 
in the usual sense. Yet the consultant had combined 
them as if they were. To illustrate, suppose there were 
a 10 percent probability of x or more deaths occur-
ring in Ward A and a 10 percent chance of y or more 
deaths occurring in Ward B during de Berk’s shifts. 
Then one would think there was only a 1 percent 
(i.e., 10 percent times 10 percent) chance that both 
events would happen. But if the “10 percents” are  
p-values, not probabilities, then they are just num-
bers attached to data. A more relevant question 
would be, “What are the chances of picking two 
random numbers between 0 and 1 that multiply to 
less than 1/100?” This probability is more than 5 per-
cent—considerably more than the naïve estimate. In 
de Berk’s case, Gill showed that the correct probabil-
ity should have been calculated as 1 in 100,000—not 
1 in 342 million.

That still sounds pretty damning, but there were 
many other problems with the data that actually 
make the calculation moot. The deaths in the other 
wards would not have been noticed if the hospital 
administration hadn’t gone looking for them; this is 
called “confirmation bias.” In addition, data on all the 
times a death had not happened on de Berk’s shifts 

was overlooked (“selection bias”). In view of the bi-
ased way the data were acquired, a professional stat-
istician would have to say that no conclusions could 
be drawn from them. The calculations discussed 
above would be valid only if the data came from a 
monitoring system set up in advance that treated ev-
ery nurse equally.

In 2010, de Berk’s case was reopened and her 
conviction was overturned. Once again, the court 
said that statistics were not the issue. There was 
new medical evidence that the poison de Berk al-
legedly used (digoxin) can accumulate in the body  
naturally after death, so its presence in the alleged 
victims’ bodies did not indicate foul play. However, 
the flimsiness of the statistical case against her may 
well be the reason that doctors took a closer look at 
the medical evidence and found that wanting as well.

A strong message emerges from these three 
cases, even though the details are different. Statistical 
reasoning can be useful for spotting nefarious behav-
ior. But they can do so only if the data are gathered 
in a planned, methodical, and unbiased way. In ad-
dition, the data must be analyzed by competent pro-
fessionals who understand the assumptions behind 
the statistical models. The best defense against “ly-
ing with statistics” (even inadvertently) is … to hire  
a statistician.

1.5 Statistics, Genomics, and Cancer
In the 1970s, when U.S. President Richard Nixon 
declared a “war on cancer,” the disease was seen as 
a monolithic adversary; treatment was harsh and 
successes were few. But during the 1980s and 1990s, 
cancer researchers discovered that cancers are al-
most as unique as the patient. There isn’t just one 
disease called “breast cancer”—there are many. Each 
kind of breast cancer has a different prognosis and 
calls for different kinds of treatment. It took 20 years 
for scientists to recognize and find a treatment for 
estrogen-receptor positive cancer, from the discov-
ery of the receptor gene (called HER2) in 1978 to the 
FDA’s approval in 1998 of Herceptin. 

But a new wind was blowing in cancer research 
and in all of medicine by the end of the 1990s. It was 
the era of genomics. The invention of the microarray, 
or “gene chip,” made it possible for scientists to study 
gene expression in cells (including cancer cells) not 
just one gene at a time, but thousands at a time.

One kind of gene chip contains short snippets 
of DNA from known genes, which are attached to a 
glass base. Often, they are arranged in a rectangu-
lar array, like pixels in a photograph. The rows and 
columns in the array have meanings. For instance, 
the rows may represent samples from different can-
cers and the columns might represent genes. When a 
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DNA sample from a patient is inserted into the chip, 
it will attach to those snippets that match some sub-
sequence of DNA in the sample. When this happens, 
fluorescent chemicals in the microarray cause that 
dot to light up. The array displays a pattern of bright 
red and green lights, like a Christmas tree, that iden-
tify which genes are present in that sample of DNA.

With microarrays, biologists could test for hun-
dreds or thousands of genes simultaneously. Could 
the microarray data be used to identify other previ-
ously unsuspected kinds of cancer, analogous to the 
estrogen receptor-positive variants?

The answer was yes, thanks to a statistical tech-
nique called clustering and a visualization technique 
called heat maps. The idea is to look for rows or col-
umns in the microarray with similar patterns of red 
and green lights. The most similar rows are placed in a 
cluster. Then the process is repeated. The clusters that 
are most similar are grouped into even larger clus-
ters. The process can be continued until everything is 
placed into one big cluster, or it can be stopped at an 
earlier stage when there are just a few big clusters.

After suitable clusters have been found, the rows 
and columns of the microarray data can be rear-
ranged so that adjacent rows or columns are in the 
same cluster. As simple as it sounds, this makes an 
amazing difference. An initially jumbled pattern 
of reds and greens will take on a remarkable plaid 
appearance after it is converted to a heat map. The 
clusters—the plaid bands—literally pop out of the 
picture; you don’t have to be an expert to see them. 
However, two things should be pointed out about 
heat maps. First, they are only a visualization tech-
nique and only as valid as the clustering algorithm 
that produces them. Second, in spite of the belief 
of genomics researchers that heat maps are a recent 
invention, statisticians have been producing images 
like this for almost 100 years!

In a landmark paper in 2000, a large team of 
researchers led by geneticist David Botstein applied 
cluster analysis to malignant breast tumors and found 
that they could be classified into five distinct groups. 
What was interesting about this was that only four of 
the groups were already known. One of them, for ex-
ample, was the HER2-positive group. Botstein called 
the newly discovered group of breast cancers “basal-
like,” because the gene expression pattern was similar 
to cells in the basal (outer) layer of the breast. It was 
the first time that a statistical program had discov-
ered a “biomarker” for a distinct subtype of cancer.

Of course, that was only the beginning of the story. 
One of the drawbacks of cluster analysis is that it will 
produce clusters whether actual meaningful groups ex-
ist or not. The findings had to be replicated and it had to 
be shown that the new cluster was biologically relevant, 
not just an artifact of the clustering algorithm. 

In the case of basal-like breast cancer, the results 
in the ensuing years have been clear. It is a distinct enti-
ty from other breast cancers. It is particularly prevalent 
in younger women and in black women and is associ-
ated with a gene (BRCA1) that can be identified by a 
commercially available test. Clinically, it has one of the 
poorest prognoses of any breast cancer, because it is ag-
gressive and because it is typically “triple-negative”—it 
does not display any of the three common estrogen re-
ceptors. That means that drugs like Herceptin, which 
target an estrogen receptor, are ineffective.

In short, basal-like breast cancer is exactly the 
kind of cancer that we most need a treatment for, a 
particularly vicious cancer that especially hits younger 
women. But it’s hard to base a treatment on a negative 
test. The value of the microarray study is that it identi-
fies a positive criterion for identifying these cancers 
and suggests genetic targets that a drug might be able 

Official/Government Statistics
It is a little-known fact that the word “statistics” actually comes from the 
root “state”—it is the science of the state. Thus, government or official 
statistics have been involved in the discipline from the beginning, and, 
for many citizens, they are still the most frequently encountered form of 
statistics in daily life.

Several trends are placing new demands on official statisticians. 
Many governments are moving toward open government, in which all 
official data will be available online. Many constituents expect these data 
to be free. However, open access to data poses new problems of privacy, 
especially as it becomes possible to parse population data into finer and 
finer units. Free access is also a problem in an era of flat or declining 
budgets. Though information may want to be free, it is certainly not free 
to collect and curate.

At the same time, new technologies create new opportunities. There 
are new methods of collecting data, which may be much cheaper and 
easier than traditional surveys. As governments move online, admin-
istrative records become a useful and searchable source of information. 
Official statisticians will face a Big Data problem similar to private busi-
ness as they try to figure out what kinds of usable information might 
exist in these large volumes of automatically collected data and how to 
combine them with more traditionally collected data. They also need to 
think about the format of the data; mounds of page scans or data that are 
presented out of context may not be very useful. With proper attention 
to these issues, both old democracies and new democracies can become 
more transparent, and the citizens can become better informed about 
what their governments are doing.
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to exploit. As of this writing, drugs for basal-like breast 
cancer have been fast-tracked by the FDA. Though 
it has been 14 years since the discovery of basal-like 
breast cancer, such a development time is normal, or 
even quick, in the context of cancer research.

The discovery of basal-like breast cancer is a 
model of what biologists hope to accomplish through 
genome research, as well as the ways in which stat-
isticians can contribute. However, in all fairness, 
it must be pointed out that this is not yet a typical  
example. The research literature is full of putative 
biomarker discoveries. Yet, according to a 2012 ar-
ticle by oncologist Scott Kern, “Less than 1% of pub-
lished cancer biomarkers actually enter clinical prac-
tice.” (He defined “entering clinical practice” to mean 
that a patient can actually get a test for that biomark-
er that will be reimbursed by an insurance company.) 
In some cases, a biomarker may be valid but not be 
useful for clinical treatment. In other cases, the sup-
posed discoveries are simply wrong and cannot be 
replicated. The difficulty of reproducing published 
results has been much discussed in recent years and 
will be discussed later in this report.

1.6 After the Gold Rush: Kriging  
and Geostatistics
Not too many people get to see their names turned 
into a verb. But in the early 1950s, a South-African 
mining engineer named Danie Krige revolution-
ized the mining industry to such an extent that his 
name has been affixed to a statistical technique that 
he helped to invent. “Kriging” now refers to a meth-
od for interpolating data collected at sparse sample 
points in a way that minimizes the expected error of 
the estimates. 

The application Krige developed his method 
for was gold mining. The huge gold deposits in the  
Witwatersrand (the world’s richest gold field) are 
buried deep underground, so miners have to drill 
boreholes to figure out where the highest-grade ore 
is. But the boreholes are just isolated points in a land-
scape of thousands of square kilometers. Until Krige, 
there had been no formal statistical method for esti-
mating the grade of ore between boreholes. 

Krige made three simple assumptions. (Though 
they are debatable, some assumptions always have to 
be made to derive any kind of mathematical or sta-
tistical model. Often, alternative models are applied 
to determine the robustness of the conclusions to 
specific assumptions.) First, he assumed that there 
was some average concentration of gold throughout 
the gold fields. Second, there are random deviations 
from this average, due to all the churning and scram-
bling of rock through Earth’s geologic history. Third 
and most important, the deviations are correlated.  

A borehole drilled in one spot can tell you about the 
ore concentration nearby. The form of the correla-
tion is not specified in advance, but it is assumed to 
remain unchanged or vary slowly throughout the 
field. For example, if the strata that the gold lie in are 
oriented north-to-south, then the correlations may 
be greater in that direction than in the east-west di-
rection.

The method Krige derived from these assump-
tions was quintessentially statistical, because the 
prospector pays more attention to the covariances 
(a measure proportional to the correlation of the 
random deviations) than the actual values of the 
borehole measurements at first. This information is 
summed up in a graph called a “variogram.” Once 
the variogram is known, an estimate of the grade of 
ore at any point in the field can be interpolated by 
taking a weighted average of the grade at the nearest 
boreholes. The weights are computed from the vario-
gram by a formula that Krige developed. The result-
ing estimate is the best linear unbiased predictor of 
the actual ore concentration.

Interpolation techniques of various kinds were 
developed long before Krige. However, none of these 
approaches is inherently statistical. They are not 
based on a model of uncertainty. Instead of mini-
mizing the expected error in the predictor, they op-
timize other things—the smoothness of the interpo-
lated function, for instance. But a miner doesn’t care 
whether the predicted distribution of ore is smooth. 
He just wants to make sure it’s correct!

Ironically, Krige himself did not fully under-
stand the optimality of his technique. It was Georges 
Matheron, a French mathematician and geologist, 
who clarified the theory in the 1960s and introduced 
the name “kriging.” Matheron also developed a num-
ber of alternative methods for cases where Krige’s 
simple model is not reasonable. For instance, in “or-
dinary” kriging (invented by Matheron), you don’t 
assume that you know the average concentration of 
ore in the field. In “universal” kriging (also invented 
by Matheron), you can assume that the average ore 
concentration has a distinct trend. For example, it 
may gradually increase in the north-south direction. 

New variants are being discovered even today. 
Matheron’s techniques—like many traditional statis-
tical techniques—don’t scale well. In practice, if you 
have more than a few hundred data points, your cal-
culation will grind to a halt (or a slow crawl). To solve 
this problem, “fixed rank kriging,” introduced in 
2006, brings kriging into the era of Big Data. Krige’s 
and fixed-rank kriging speeds up the algorithm by 
orders of magnitude by assuming a particularly par-
simonious form for the variograms.

The utility of kriging goes far beyond mining, 
although it is not always called by that name in more 
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distantly related fields. Krige’s statistical model was 
discovered in the Soviet Union before it was known 
in the West, and a Soviet meteorologist named Lev 
Gandin independently proved Matheron’s theorems 
about the optimality of kriging. The Russians called 
the variogram a “homogeneous structure function” 
and kriging “optimal interpolation,” or OI. Unfor-
tunately, they weren’t as clever at naming things as 
Georges Matheron was!

Questions of nomenclature aside, the applicabil-
ity of kriging to meteorology is not hard to explain. 
Meteorologists constantly have to produce maps 
with smooth curves from data that are concentrated 
at a small number of observation points. While krig-
ing may be too computationally intensive to use for 
a daily weather map, it is perfect for things like esti-
mating the thickness of the snowpack or drawing a 
map of the ozone hole. 

In recent years, many farmers have adopted 
“precision agriculture,” a development that owes as 
much to kriging as to new technology. Farmers can 
now manage their crops in a way that takes account of 
variations in growing conditions within a field. They 
measure statistics such as soil acidity or productivity 
of past crops at a few locations and use kriging to 
create a smooth map of the whole field. The map lets 
them decide where to put lime or fertilizer and how 
much. By limiting the use of these chemicals, they 
not only save money, but also minimize damage to  
the environment.

Though developed for geosciences, kriging can 
even be extended to outer space. One way that astron-
omers infer the distribution of matter in the universe 
involves what they call the “Lyman-alpha forest.” Light 
from extremely distant quasars passes through many 
galaxies and clouds of gas on its way to our telescopes 
here on Earth. A specific wavelength of this light (the 
Lyman-alpha band) is absorbed by the hydrogen at-
oms it encounters on the way. The amount of absorp-
tion gives astronomers a clue to how much matter is 
out there. But the information is limited to one di-
mension—the straight line of sight between Earth and 
the quasar. That line of sight is like a borehole in a gold 
field, only it’s a borehole billions of light-years long. 
Unfortunately, there are not many quasars, and there 
is a lot of empty space between the boreholes (or the 
trees in the Lyman-alpha forest, to use the metaphor 
that the astronomers prefer). Not surprisingly, kriging 
is one method to infer the distribution of matter in 
those in-between regions.

1.7 ‘Analytics’ in Sports and Politics
In recent years, statistics and statistical methods 
have achieved unprecedented prominence in the 
sports world, where they are often referred to as 
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“analytics.” The best-publicized example was the 
adoption of analytics by the Oakland (California)  
Athletics baseball team in the late 1990s and early 
2000s, the subject of the book (and movie) Money-
ball. The Athletics enjoyed—and are still enjoying—
a run of success that is incommensurate with their 
financial resources. Moneyball attributes their suc-
cess to the visionary general manager, Billy Beane, 
who was willing to adopt unconventional metrics 
of baseball ability. (A general manager makes hiring 
and trading decisions and is thus responsible for the 
personnel on a baseball team.) 

The analytics movement also received a boost 
from the success of the Boston Red Sox. Though not 
a small-market team in the mold of the Athletics, the 
Red Sox franchise had long been considered to be 
“cursed” (not a statistical or scientific concept!) be-
cause of its inability to win a World Series since 1918. 
In 2002, the Red Sox hired a new analytics-oriented 
general manager, Theo Epstein, and they brought 
in the founder of baseball analytics (also known as 
“sabermetrics”), Bill James, as a consultant in 2003. 
Sure enough, in 2004, they won their first World Se-
ries in 86 years and followed it with two more titles 
in 2007 and 2013. Analytics suddenly seemed like a 
golden path to success. Today, according to Oakland  
Athletics director of baseball operations Farhan Zai-
di, every professional baseball team has an analytics 
department of some kind.

The sabermetric movement really began in 
the early 1980s, when James, in his annual Baseball  
Abstract, began subjecting baseball statistics to quan-
titative scrutiny. Baseball had long been one of the 
most data-rich sports, but James found that many of 
the traditional measures of success, such as “batting 
average” for hitters or “won-loss record” for pitchers, 
had little predictive value. Batting average arbitrarily 
ignored an important way a hitter can contribute 
to his team (by drawing a walk, thus reaching base 
without actually hitting the ball). Batting average 
is also biased in favor of hitters in “hitter-friend-
ly” parks. For pitchers, wins and losses seem like a 
natural metric, but they are contaminated by many 

In recent years, statistics and statistical methods have 
achieved unprecedented prominence in the sports 
world, where they are often referred to as “analytics.”
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Section 1. How Statistics Is Used in the Modern World: Case Studies

As used in this report, the words “data” and “sta-
tistics” mean two different things. This point, 
which is so evident to statisticians that it barely 
needs mentioning, is nevertheless crucial to es-
tablish at the outset. For the general public, the 
two words are nearly synonymous, and most 
people would have great difficulty explaining 
the difference if pressed to do so. The confusion 
is very important, because it leads to a lack of 
understanding of or appreciation for what stat-
isticians do.

In this report, the word “data” means a se-
ries of measurements or observations—usually 
in numerical form, but not necessarily—of some 
phenomenon. On the other hand, the word “sta-
tistics” refers to an academic discipline and a set 
of best practices to convert data into meaning-
ful, actionable information about the real world, 
particularly in the presence of uncertainty. The 
word “statistic” is also used in the specialist lit-
erature to mean “a numerical summary of data.” 
For example, the median and the mean are both 
examples of a statistic. 

For example, a statistician may be given 
data on the number of unique visitors to a web-
site each day. The goal is to transform the data 
into insights, such as this:

The number of visitors tends to be greater on 
days when there is a new post, or the number of 
visitors behaves like a linear function of the ad-
vertising budget, plus a certain amount of ran-
dom variation.

Do the data support such a conclusion? If 
so, how strongly? To evaluate these statements, 
the statistician may compute certain kinds of 
statistics, such as means and linear regression 
coefficients and p-values. (The latter term will 
be mentioned in several places in this report. In 
brief, p-values are a way of assessing the “statis-
tical significance” of a difference between two 
groups, such as “days with a post” and “days 
without a post.”) No matter what conclusion 
the statistician reaches, there will always be un-
certainty about the result. Statistics is meant to 
quantify uncertainty, not to hide it. 

Uncertainty comes in two flavors: random 
and systematic. Both are of concern to statisti-
cians. They have developed a suite of powerful 
mathematical tools over the years to estimate 
the size and nature of random uncertainty in 
various contexts. This is the professional exper-
tise that statistics students acquire during their 
education and that scientists call upon every 
day. Systematic uncertainty is just as impor-
tant, and not as easy to manage. Understanding 
systematic uncertainty requires a certain skep-
tical frame of mind, which is prepared to look  
for hidden biases in data collection and to re-
ject the data outright if the biases cannot be cor-
rected for. 

This clear-eyed skepticism can be taught in 
school, but it is also learned through experience 
and example. It is one of the most important in-
gredients that professional statisticians can bring 
to the table in scientific research, ideally even 
before the data are collected. “The statistician 
who supposes that his main contribution to the 
planning of an experiment will involve statistical 
theory, finds repeatedly that he makes his most 
valuable contribution simply by persuading the 
investigator to explain why he wishes to do the 
experiment,” wrote Gertrude M. Cox, a pioneer-
ing American statistician and former president of 
the American Statistical Association.

In short, statistics is a profession that is built 
on data, but statistics is more than data. The data 
should be collected with a purpose (although 
appropriate secondary use of data, different 
from the originally intended use, can also be 
informative). Attention should be paid to iden-
tifying confounding factors and removing sys-
tematic sources of bias. When conclusions are 
drawn, they should be presented in a way that 
acknowledges the uncertainty and estimates its 
size. When all of these ingredients are present, 
whether the context is economics or biology or 
Web commerce, it is like a signature: “Statisti-
cians were here.”

Statisticians Were Here: A Word on Terminology
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confounding factors. A pitcher can pitch poorly, but  
nevertheless get credit for a win because his team 
scores many runs. Likewise, a powerful pitching ef-
fort can go to waste for reasons beyond the pitcher’s 
control. At best, wins and losses are an imperfect 
measure of a pitcher’s value, and they are not caus-
ative. A good won-lost record is a result of a pitcher’s 
success; it is not a predictor.

These principles—controlling for confounding 
factors, eliminating bias, distinguishing correlation 
from causation—have been part of good statistical 
practice for a long time. However, despite the abun-
dance of data in baseball, the data had never been 
subjected before to rigorous statistical thinking. It is 
not surprising that early adopters of sabermetrics 
enjoyed considerable success against teams that used 
metrics with no sound statistical foundations.

In 2007, Nate Silver, a well-known sabermetri-
cian, ventured into another high-profile area: poli-
tics. Frustrated by the lack of solid methodology 
among many political pundits, he began writing a 
blog called FiveThirtyEight.com. In the 2008 U.S. 
presidential election, he correctly forecasted the re-
sults of 49 out of 50 states, as well as all 35 Senate 
races. This seemingly uncanny success rate attracted 
a great deal of media attention, and his blog was ac-
quired by The New York Times. In the 2012 presiden-
tial election, he correctly called the results of all 50 
states and 31 out of 33 Senate races. A week before 
the election, he gave President Obama a 70 percent 
chance of winning, and by the day of the election, the 
probability was up to 90 percent, even while many 
commentators were calling the election a toss-up. 

Silver does not rely (at least not heavily) on in-
side information. His method is simply to aggregate 
existing polls, weighting them in the most informa-
tive way. Even a poll that is habitually biased toward 
one party may contain useful information. It may 
have access, for whatever reason, to potential vot-
ers that other polls miss. An aggregate of polls can 
incorporate more information than any individual 
poll, and in the end, it will nearly always outperform 
individual polls. 

To some extent, the remarkable feat of correctly 
predicting 50 out of 50 states obscures what Silver 
really did and why his methods work. As he explains 
in his bestselling book The Signal and the Noise, there 
is a difference between predicting and forecasting. 
A prediction is a single outcome: “Obama will win 
Ohio.” A forecast is a probability statement: “Obama 

has an 80 percent chance of winning Ohio.” 
An example of forecasts that we are all familiar 

with is a weather forecast. As Silver points out, we 
are better at forecasting the weather than almost any 
other uncertain phenomenon in our lives: stock mar-
kets, earthquakes, terrorist attacks. There are many 
reasons, but one of them is that weather forecasts do 
not pretend to be predictions. They always come with 
a probability of error. If an honest weather forecaster 
says there is an 80 percent chance of rain, he should 
be wrong one-fifth of the time. It should literally rain 
80 percent of the times he issues such a forecast and  
it should not rain the other 20 percent. The data  
show, in fact, that this is exactly what happens with 
weather forecasts.

U.S. presidential elections are especially suitable 
for a probabilistic approach because they involve 51 
mini-elections (including the District of Columbia) 
that are correlated in a complicated way. An expert 
who relies solely on experience and intuition cannot 
assess the probabilities well enough, but a computer-
ized model can. 

It is exceedingly important for a political fore-
caster to think like a weather forecaster in terms of a 
probability distribution with a certain range of error. Of 
course, this goes against the inclination of most people 
reading polls. Human nature does not like uncertainty. 
We like predictions: “President Obama will win the 
election.” But a forecast is more honest, and more trust-
worthy in the long run, if it makes some explicit state-
ment about the range of possible outcomes.

Like the successes of Theo Epstein and Billy 
Beane, Nate Silver’s success was not achieved in a 
vacuum. Statisticians have been forecasting things 
like voter turnout and the effects of gerrymandering 
for at least three decades, and Silver’s methods are 
not particularly novel or better than the others. What 
is new is the amount of media attention that he has 
attracted. He has gone beyond the traditional aca-
demic journals, disseminating his research via the 
much more widely read medium of the Internet. In 
this way, he has greatly enhanced the public profile of 
statistics. This approach clearly has its dangers, and 
it cannot substitute for peer-reviewed publication in 
journals. However, it does provide an opportunity 
and a model for public engagement that other stat-
isticians might think about emulating. Not only that, 
it shows that sound, principled statistical reasoning 
does have a chance to be heard amidst the Babel of 
conflicting opinions that is the Internet.  ❖

Section 1. How Statistics Is Used in the Modern World: Case Studies



20    Statistics and Science – A Report of the London Workshop on the Future of Statistical Sciences

SECTION 2. 
Current Trends and Future 
Challenges in Statistics:  
Big Data

Without a doubt, the most-discussed cur-
rent trend in statistics at the Future of 
Statistics Workshop was Big Data. The 

ubiquity of this phrase perhaps conceals the fact that 
different people think of different things when they 
hear it. For the average citizen, Big Data brings up 
questions of privacy and confidentiality: What in-
formation of mine is out there, and how do I keep 
people from accessing it? For computer scientists, 
Big Data poses problems of data storage and man-
agement, communication, and computation. And for 
statisticians, Big Data introduces a whole different 
set of issues: How can we get usable information out 
of databases that are so huge and complex that many 
of our traditional methods can’t handle them? 

At the workshop, all perspectives were present, 
from “Big Data is an opportunity that statisticians 
should not miss” to “Big Data will change statistics as 
we know it” to “Big Data is just a fad and we should 
not buy into the hype.” This section of the report will 
not endorse any of these points of view, but will sum-
marize the state of play and the challenges that Big 
Data poses to statistical science.

2.1 Examples of Big Data
Some of the most commonly cited forms of Big Data are:

•	 Commercial databases, such as those of 
Google or Facebook. 

•	 Government or official data. 

•	 Human genome databases. Even a single 
human genome contains more than 3 bil-
lion base pairs. The 1000 Genomes Project, 

for example, has now collected 200 tera-
bytes (200 trillion bytes) of data.

•	 Human brain data. A single human brain 
scan consists of data on more than 200,000 
voxel locations, which could be mea-
sured repeatedly over 300 time points. The  
Human Connectome Project, which is gath-
ering MRI images of 1,200 patients over 
a five-year period, has publicly released 7 
terabytes of data as of early 2014. 

•	 Databases in physics and astronomy. For 
example, the Large Hadron Collider experi-
ment generates more than a petabyte (1,000 
trillion bytes) of data per year. The Large 
Synoptic Survey Telescope (LSST), which 
is scheduled to become operational in 2020, 
will generate a petabyte of data per night.

2.2 Not Just Big, but Different
For statisticians, Big Data challenges some basic par-
adigms. One example is the “large p, small n” prob-
lem. (Comment on notation: This “p” is the number 
of variables, not a p-value!) Classical statistics pro-
vides methods to analyze data when the number of 
variables p is small and the number of data points n is 
large. For example, a biologist might want to estimate 
how the population of a particular species of fish in a 
river varies, depending on variables like the depth of 
the river, the size of the watershed, the oxygen con-
tent of the water, and the water temperature. These 
are four variables, and the data might be taken from, 
say, 50 or 100 streams. The sample size n far exceeds 
the number of variables p. 
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In some (though not all) Big Data applications, 
this situation is reversed. In genomics, the researcher 
might collect data on 100 patients with cancer to 
determine which genes confer a risk for that cancer. 
Unfortunately, there are 20,000 genes in the human 
genome and even more gene variants. Genome-wide 
association studies typically look at a half million 
“SNPs,” or locations on the genome where variation 
can occur. The number of variables (p = 500,000) is 
much greater than the sample size (n = 100). Similar-
ly, in neuroimaging studies, the variables correspond 
to voxels or regions of interest, which often outnum-
ber the participants in a survey.

In either situation, the goal is to develop a model 
that describes how an outcome variable (e.g., size of 
the population of fish, presence of cancer) is related 
to the p other variables (and to determine which 
variables are important in characterizing the rela-
tionship). The model depends on parameters, one 
for each variable, that quantify the relationship, and 
fitting the model to data involves estimating the pa-
rameters from data and assessing the evidence that 
they are different from zero (reflecting an important 
variable). When p is larger than n, the number of 
parameters is huge relative to the information about 
them in the data. Thousands of irrelevant param-
eters will appear to be statistically significant if one 
uses small-data statistics. In classical statistics, if the 
data contain something that has a one-in-a-million 
chance of occurring, you can be confident that it isn’t 
there by chance. But if you look in a half million plac-
es, as in the Big Data world, suddenly it isn’t so un-
usual to make a one-in-a-million discovery. Chance 
can no longer be dismissed as an explanation. Stat-
isticians call this the “look-everywhere” effect, and 

it is a major problem with data-driven, rather than 
hypothesis-driven, approaches to science.

Statisticians have already found several good 
ways to deal with the look-everywhere effect. Most 
data sets have only a few strong relationships be-
tween variables, and everything else is noise. Thus 
most of the parameters simply should not matter. 
One way to make them not matter is to assume all 
but a few parameters are equal to zero. Some tech-
nical advances in the last few years have made this 
a particularly promising way to extract a needle of 
meaningful information from a haystack of data. 
One such technique is called L1-minimization, or 
the LASSO, invented by Robert Tibshirani in 1996. 
Coincidentally, L1-minimization was discovered al-
most simultaneously in the field of image processing, 
where it enables the extraction of an image in sharp 
focus from blurry or noisy data.

Another widely applied technique, especially in 
genome and neuroimaging research, is the false dis-
covery rate (FDR) proposed by Yoav Benjamini and 
Yosi Hochberg in 1995. This is a method of provid-
ing an alternative interpretation to statistical signifi-
cance tests to take account of the look-everywhere 
effect. For example, if a study finds 20 SNPs with a 
statistically significant association with cancer, and 
it has a false discovery rate of 10 percent, then you 
should expect two of the 20 “discoveries” to be false, 
on average. The FDR doesn’t tell you which ones (if 
any) are spurious, but that can sometimes be deter-
mined by a follow-up study. 

These examples make it clear that Big Data should 
not be viewed only as a challenge or a nuisance. It is 
also an opportunity for statisticians to re-evaluate their 
assumptions and bring new ideas to the forefront.
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2.3 Big n, Big p, Little t (time)
As both n and p grow, statisticians have to grapple 
with another difficulty that they have never had to 
take seriously before: the pressure of time.

Classical statistics was always done in an offline 
mode; a lot of the theory was developed in an era (the 
early 1900s) when “online” didn’t even exist. The re-
searcher collected the data, then went back to his or 
her office and analyzed it. The time for analysis was 
essentially unlimited. The data were small anyway, so 
the statistician never had to think about whether the 
calculations were done in an efficient way.

However, in the era of Big Data, things are differ-
ent. Web companies make their money by trying to 
predict user reactions and elicit certain user behav-
iors (such as clicking on an advertisement sponsored 
by a client). To predict the response rate, they need a 
statistical model with large n (millions of clicks) and 
large p (tens of thousands of variables—which ad to 
run, where to put it on the page, etc.). In this case, 
n is much larger than p, so classical statistical tech-
niques could apply in theory. 

However, the algorithms needed to perform a 
regression analysis don’t scale well. The Web com-
pany might have only milliseconds to decide how 
to respond to a given user’s click. Not only that, the 

model constantly has to change to adapt to new us-
ers and new products. The Internet is like a massive 
ongoing experiment that is constantly changing and 
never finished.

To address the problem of time, statisticians 
have started to adopt and adapt ideas from computer 
scientists, for whom speed has always been an issue. 
The objective in some cases may not be to deliver a 
perfect answer, but to deliver a good answer fast. 

Yet at the same time, statisticians cannot afford 
to stop thinking like statisticians. They bring a type 
of expertise to the corporation that computer sci-
entists (for the most part) can’t: Statisticians under-
stand uncertainty. Where a computer scientist sees 
a number, a statistician sees a range of possibilities. 
Predictions get better when they are thought of as 
forecasts, which have an inherent uncertainty. Stat-
isticians are also uniquely qualified to make infer-
ences—to abstract connections between variables 
from data and determine which connections are real 
and which are spurious.

One way to make statistical procedures more 
efficient is to parallelize them—to write algorithms 
that can run on many computers or many processors 
at once. At the London workshop, Michael Jordan 
presented a case study of one such application called 
the Bag of Little Bootstraps (BLB). The “bootstrap” 
is a standard method, invented by Bradley Efron in 
1979, for inferring the probability distribution of a 
population from a sample. Like so many statistical 
methods, it is computationally intensive. However, 
it is an ideal candidate for parallelization, because it 
involves generating numerous independent rounds 
of simulated data. In 2012, Jordan and a group of 
colleagues ran the BLB on the Amazon cloud com-
puting platform using various data sets in the public 
domain. The BLB generated results comparable to 
the regular bootstrap, but orders of magnitude fast-
er. The supporters of the research read like a Who’s 
Who of high-tech companies: Amazon, Google, SAP,  
Cisco, Oracle, and many more. It’s fair to say that 
Silicon Valley has noticed the need for new statistical 
tools to deal with Big Data.

2.4 New Data Types
Another current trend that has emerged in tandem 
with Big Data is new data types. These data are not 
simple numbers; they come in the form of a func-
tion, image, shape, or network. For instance, first-
generation “functional data” may be a time series, 
measurements of the blood oxygenation taken at a 
particular point and at different moments in time. 
In contrast to traditional scalar or multivariate data, 
the observed function in this case is a sample from 
an infinite-dimensional space (because it involves 

Financial Statistics
The financial crisis of 2007 and 2008, and the recession that followed, 
brought to light a number of fundamental flaws in the evaluation of 
risk. The Basel accords required financial institutions to report the risk 
of their investments. However, the metric that became standard in the 
community (Value at Risk) was merely a measurement of convenience 
that had been developed by one company and had little statistical theory 
behind it. Also, the methods that were used to value credit derivatives 
(such as the Gaussian copula) were deeply flawed and likewise became 
popular simply because “everybody else is doing it.” In particular, these 
methods assumed that certain events, such as the default of a home-
owner in Las Vegas and the default of a homeowner in Miami, are in-
dependent, or at most, weakly dependent. In normal times, this is a 
harmless assumption. However, during a financial panic, such events 
become highly correlated. Some statisticians sounded a warning long 
before 2007 about the immensely risky positions that were being passed 
off as sound, but they were ignored.

It remains to be seen whether financial institutions can learn to po-
lice themselves, but it’s fair to say that if a solution exists, it will require 
an approach that owes less to herd psychology and more to sound sta-
tistical principles.

Section 2. Current Trends and Future Challenges in Statistics: Big Data
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knowing the oxidation at infinitely many instants). 
Such “infinite-dimensional” data already demand 
more sophisticated methods. 

But even that isn’t the end of the story. At the 
London workshop, Jane-Ling Wang talked about 
next-generation functional data, which include cor-
related random functions. The functions may have 
conventional numerical values, or the values may be 
images or shapes. For instance, the observed data at 
time t might be the region of the brain that is active 
at time t. 

Brain and neuroimaging data are typical exam-
ples of next-generation functional data, and they are 
the focus of two recent research initiatives on human 
brain mapping, one by the Obama administration 
and another by the European Union. These projects 
aim at mapping the neuron activity of the whole 
human brain and understanding how the human  
brain works. 

Next-generation functional data are invari-
ably Big Data, but they are not just big, they are also 
complex. They require the invention or importing of 
ideas from areas of mathematics outside what is con-
ventionally thought of as statistics, such as geometry 
(to describe abstract shapes) or topology (to describe 
the spaces that the data are sampled from). These are 
examples of the ways in which Big Data not only 
challenge, but also enrich, the practice of statistics. 

2.5 Privacy and Confidentiality
The year 2013 was the year when many Americans 
woke up to the volumes of data that are being gath-
ered about them, thanks to the highly publicized 
revelation of the National Security Agency’s data-
mining program called PRISM. In this climate, pub-
lic concerns about privacy and confidentiality of in-
dividual data have become more acute. It would be 
easy for statisticians to say, “Not our problem,” but, 
in fact, they can be part of the solution.

Two talks at the London workshop, given by 
Stephen Fienberg and Cynthia Dwork, focused on 
privacy and confidentiality issues. Fienberg sur-
veyed the history of confidentiality and pointed out 
a simple, but not obvious, fact: As far as government 
records are concerned, the past was much worse 
than the present. U.S. Census Bureau records had no 
guarantee of confidentiality at all until 1910. Legal 
guarantees were gradually introduced over the next 
two decades, first to protect businesses and then in-
dividuals. However, the Second War Powers Act of 
1942 rescinded those guarantees. Block-by-block 
data were used to identify areas in which Japanese-
Americans were living, and individual census re-
cords were provided to legal authorities such as the 
Secret Service and Federal Bureau of Investigation 

on more than one occasion. The act was repealed in 
1947, but the damage to public trust could not be re-
paired so easily.

There are many ways to anonymize records 
after they are collected without jeopardizing the 
population-level information that the census is 
designed for. These methods include adding ran-
dom noise (Person A reports earning $50,000 per 
year and the computer adds a random number to 
it, say –$10,000, drawn from a distribution of ran-
dom values); swapping data (Person A’s number of 
dependents is swapped with Person B’s); or matrix 
masking (an entire array of data, p variables about 
n people, is transformed by a known mathematical 
operation—in essence, “smearing” everybody’s data 
around at once). Statisticians, including many at 
the U.S. Census Bureau, have been instrumental in 
working out the mechanics and properties of these 
methods, which make individual-level information 
very difficult to retrieve. 

Cryptography is another discipline that applies 
mathematical transformations to data that are ei-
ther irreversible, reversible only with a password, or 
reversible only at such great cost that an adversary 
could not afford to pay it. Cryptography has been 
through its own sea change since the 1970s. Once it 
was a science of concealment, which could be afford-
ed by only a few—governments, spies, armies. Now it 
has more to do with protection, and it is available to 
everyone. Anybody who uses a bank card at an ATM 
machine is using modern cryptography.

One of the most exciting trends in Big Data is 
the growth of collaboration between the statistics 
and cryptography communities over the last decade. 
Dwork, a cryptographer, spoke at the workshop about 
differential privacy, a new approach that offers strong 
probabilistic privacy assurances while at the same time 
acknowledging that perfect security is impossible. Dif-
ferential privacy provides a way to measure security so 
that it becomes a commodity: A user can purchase just 
as much security for her data as she needs. 

Section 2. Current Trends and Future Challenges in Statistics: Big Data

And for statisticians, Big Data introduces a whole differ-
ent set of issues: How can we get usable information 
out of databases that are so huge and complex that 
many of our traditional methods can’t handle them? 
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Still, there are many privacy challenges ahead, 
and the problems have by no means been solved. 
Most methods of anonymizing do not scale well 
as p or n get large. Either they add so much noise 
that new analyses become nearly impossible or they 
weaken the privacy guarantee. Network-like data 
pose a special challenge for privacy because so much 
of the information has to do with relationships be-
tween individuals. In summary, there appears to 
be “no free lunch” in the tradeoff between privacy  
and information.

2.6 Quality of Data
One of the underrated services that statisticians can 
provide in the world of Big Data is to look at the 
quality of data with a skeptical eye. This tradition is 
deeply ingrained in the statistical community, be-
ginning with the first controlled trials in the 1940s. 
Data come with a provenance. If they come from a 
double-blind randomized controlled trial, with po-
tential confounding factors identified and controlled 
for, then the data can be used for statistical inference. 
If they come from a poorly designed experiment—
or, even worse, if they come flooding into a corporate 
web server with no thought at all given to experi-
mental design—the identical data can be worthless.

In the world of Big Data, someone has to ask 
questions like the following:

•	 Are the data collected in a way that intro-
duces bias? Most data collected on the Inter-
net, in fact, come with a sampling bias. The 
people who fill out a survey are not neces-
sarily representative of the population as a 
whole. (See sidebar, “Why Bias Matters.”)

•	 Are there missing or incomplete data? In 
Web applications, there is usually a vast 
amount of unknown data. For example, 
the movie website Netflix wanted to rec-
ommend new movies to its users using a  

statistical model, but it only had informa-
tion on the handful of movies the user had 
rated. It spent $1 million on a prize com-
petition to identify a better way of filling in 
the blanks.

•	 Are there different kinds of data? If the data 
come from different sources, some data 
might be more reliable than others. If all the 
numbers get put into the same analytical 
meat grinder, the value of the high-quality 
data will be reduced by the lower-quality 
data. On the other hand, even low-qual-
ity, biased data might contain some useful  
information. Also, data come in different 
formats—numbers, text, networks of “likes” 
or hyperlinks. It may not be obvious to the 
data collector how to take advantage of 
these less-traditional kinds of information.

Statisticians not only know how to ask the right 
questions, but, depending on the answers, they may 
have practical solutions already available.

2.7 A Statistician by Any Other 
Name …
“A data scientist is someone who can compute better 
than any statistician, and who can analyze data better 
than any computer scientist.” – Josh Wills (director 
of data science, Cloudera)

“A data scientist is a statistician who also understands 
those parts of computer science and mathematics 
concerned with data manipulation.” – David Hand 
(statistician, Imperial College London)

“A data scientist is a statistician who is useful.” – 
Hadley Wickham (statistician, Rice University)

For all the reasons listed in the last section, stat-
isticians can offer tremendous value to organizations 
that collect Big Data. However, statisticians at the 
Future of Statistics Workshop were concerned that 
they, or more precisely their students, might get shut 
out. The job openings in Silicon Valley that their stu-
dents are applying for are not designated for “statis-
ticians”—they are for “data scientists.” The graduate 
students want these jobs. Anecdotally, students see 
a job at Google as being equally as attractive to an 
academic job at a top-10 university. But, they can’t 
always get them. Employers want to hire students 
who can write software that works and who can solve 
problems they didn’t learn about in books. The per-
ception is that newly minted PhDs in statistics often 
don’t have those abilities.

Opinions were highly varied on how statisti-
cians should react to the new demand for “data  
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Statisticians not only know how to ask the right ques-
tions, but, depending on the answers, they may have 
practical solutions already available. 
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scientists.” Some statistics departments are begin-
ning to offer degrees in data science. The University 
of California at Berkeley has started a master’s pro-
gram in data science, a joint project of the computer 
science and statistics departments. The University of 
Warwick is offering the first undergraduate degree in 
data science in the UK, again with the collaboration 
of statistics and computer science.

Within a traditional statistics department, is 
there more that can be done to prepare students for 
a “data science” job? More computer science training 
seems to be a good idea, and it needs to go beyond 
simply learning more computer languages. The stu-
dents need to learn how to produce software that is 
robust and timely. “It needs to finish running before 
we die,” quipped Rafael Irizarry.

But the more time that students spend learning 
computer science, the less time they will have avail-
able for traditional training in statistics. The discus-
sion of what parts of the “core” can be sacrificed, or 
if there even is a “core” that is fundamental for all 
students, produced even less agreement. A few voic-
es tentatively called for less emphasis on the abstract 
mathematical foundations of the subject. However, 
some attendees felt that the unity of the subject was its 
strength, and they remembered fondly the days when 
they could go to a statistics meeting and understand 
any lecture. Even they acknowledged that things are 
changing; the trend is toward a field that is more di-
verse and fragmented. Should this trend be resisted or 
embraced? Will the pressure of Big Data be the straw 
that breaks the camel’s back, or the catalyst that drives 
a long-needed change? On questions like these, there 
was nothing even approaching consensus.

Some participants in the meeting felt that the 
reward system at the postdoctoral level also needs to 
change. Currently, the promotion and tenure system 
rewards traditional publication in scientific journals. 
Generally speaking, the more theoretical journals are 
considered more prestigious than more applied jour-
nals, and statistics journals carry far more weight 
than journals in other disciplines, such as genomics 
or climate change. Virtually no statistics department 
would give as much weight to a piece of software as it 
would to a research paper. But if they are to prepare 
students for Big Data jobs, statistics departments will 
have to practice what they preach. They will have to 
reward faculty equally for theoretical research, ap-
plied contributions, and statistical programming. 
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This would require a major cultural shift in many 
statistics departments.

Some worry that inertia and uncertainty will 
lead to an absence of a response, which would be 
the worst course of all. “I believe that the statisti-
cal sciences are at a crossroads, and that what we 
do currently … will have profound implications 
for the future state of our discipline,” wrote Marie  
Davidian, past president of the American Statistical 
Association, in response to a pre-conference request 
for comments. “The advent of Big Data, data science, 
analytics, and the like requires that we as a discipline 
cannot sit idly by … but must be proactive in estab-
lishing both our role in and our response to the ‘data 
revolution’ and develop a unified set of principles 
that all academic units involved in research, train-
ing, and collaboration should be following. … There 
are many in our profession who are furious over ‘data 
science’ and the like and believe we should be active-
ly trying to discredit these and work toward renam-
ing anything having to do with data as ‘statistics.’ At 
this point, these new concepts and names are here to 
stay, and it is counterproductive to spend precious 
energy on trying to change this. We should be ex-
pending our energy instead to promote statistics as 
a discipline and to clarify its critical role in any data-
related activity.” 

Terry Speed, winner of the 2013 Prime  
Minister’s Prize for Science in Australia, offered a 
slightly different point of view in Amstat News af-
ter the meeting: “Are we doing such a bad job that 
we need to rename ourselves data scientists to cap-
ture the imagination of future students, collabora-
tors, or clients? Are we so lacking in confidence … 
that we shiver in our shoes the moment a potential 
usurper appears on the scene? Or, has there really 
been a fundamental shift around us, so that our old 
clumsy ways of adapting and evolving are no longer 
adequate? ... I think we have a great tradition and a 
great future, both far longer than the concentration 
span of funding agencies, university faculties, and 
foundations. … We might miss out on the millions 
being lavished on data science right now, but that’s 
no reason for us to stop trying to do the best we can 
at what we do best, something that is far wider and 
deeper than data science. As with mathematics more 
generally, we are in this business for the long term. 
Let’s not lose our nerve.”  ❖
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3.1 The Reproducibility Crisis
One of the most controversial topics at the Future of 
Statistics workshop, after Big Data, was the problem of 
reproducibility in scientific research. While opinions 
vary as to how big the problem is, major science maga-
zines and even the U.S. Congress have taken note.

In 2005, statistician John Ioannidis started the 
debate with a widely read and provocatively titled 
paper called “Why Most Published Research Find-
ings Are False.” His conclusion was based on a simple 
mathematical argument, combined with an under-
standing of the way that statistical significance tests, 
specifically p-values, are typically used. (See sidebar, 
“Reproducibility: Two Opposing Views.”)

Though the details may be complex, a clear mes-
sage emerges: A surprisingly large percent of claimed 
discoveries in the medical literature can be expected 
to be wrong on statistical grounds alone. Actual evi-
dence based on the scientific merits suggests that the 
problem is even worse than advertised. Researchers 
from Amgen were able to replicate only 6 out of 53 
supposedly classic results from cancer research. A 
team at Bayer HealthCare reported in Nature that 
when they tried to replicate 67 published studies, the 
published results were “completely in line with our 
in-house findings” only 14 times. These are all real 
failures of replication—not projected failures based 
on a statistical model. More recently, a network of 
nearly 100 researchers in social psychology attempt-
ed to replicate 27 studies. These were not obscure 
results; they were picked because of their large in-
fluence on the field. Nevertheless, 10 of the replica-
tion efforts failed completely and another five found 
smaller effects than the original studies.

These examples point to a larger systemic prob-
lem. Every scientific researcher faces pressure to 
publish articles, and those articles that report a posi-
tive new discovery have a great competitive advan-
tage over articles with a negative result. Thus there 
is a strong selection bias in favor of positive results, 
even before a paper sees print.

Of course, the scientific method is supposed 
to weed out inaccurate results over time. Other re-
searchers should try to perform the same experiment 
(this is called “replication”), and if they get differ-
ent results, it should cast doubt on the original re-
search. However, what should happen is not always 
what does happen. Replication is expensive and less 
prestigious than original research. Journals tend not 
to publish replication studies. Also, the original re-
search paper may not contain enough information 
for another researcher to replicate it. The methodol-
ogy may be described incompletely, or some data or 
computer programs might be missing. 	

In 2013, the journal Nature introduced new pol-
icies for authors of life-science articles, including an 
18-point checklist designed to encourage research-
ers to be more open about experimental and statis-
tical methods used in their papers. PLoS One, an 
open online journal, teamed with Science Exchange 
to launch a reproducibility initiative through which 
scientists can have their research validated (for a fee). 
“Reproducibility” has become a new catchword, with 
a subtle distinction from “replication.” In the era of 
Big Data and expensive science, it isn’t always possi-
ble to replicate an experiment. However, it is possible 
to post the data and the computer software used to 
analyze it online, so that others can verify the results. 

SECTION 3. 
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The reproducibility problem goes far beyond 
statistics, of course, because it involves the entire re-
ward structure of the scientific enterprise. Neverthe-
less, statistics is a very important ingredient in both 
the problem and the remedy. As Leek commented 
in a blog post, “The vast majority of data analysis is 
not performed by people properly trained to per-
form data analysis.” Along with all the other mea-
sures described above, scientists need more access 
to qualified statisticians—which means that more 
statisticians need to be trained. Also, the statistical 
training of subject matter experts (scientists who are 
not statisticians) needs to be improved. The stakes 
are high, because the more the public reads about 
irreproducible studies, the more they will lose their 
trust in science.

3.2 Climate Change
One of the biggest stories in science in the 21st cen-
tury, climate change, is also a field that is greatly in 
need of more statistical expertise. As Doug Nychka 
pointed out at the London workshop, climate is in-
herently a statistical concept. It is more than just the 
average temperature for a given day in a given place. 
It is a probability distribution over the entire range of 
weather possibilities. For New Orleans on August 29, 
the average high temperature is in the mid-80s, with 
9 mph winds and a 40 percent chance of rain. Yet 
from the perspective of climate, it is surely just as im-
portant to realize that there may be 7 inches of rain 
and 125-mph winds on rare occasions. Those were 
the weather conditions on the day that Hurricane 
Katrina hit, in 2005.

Though climate studies and statistics seem to 
be natural allies, the connections between the two 
disciplines have not been as strong as one would 
expect. Climate models have tended to focus on av-
erage behavior, not extreme events. Yet the unusual 
events are the most damaging ones—hurricanes, 
droughts, floods. Statistics has a lot to say about fore-
casting extreme events. But you wouldn’t know that 
from a 2012 report on weather extremes by the Inter-
governmental Panel on Climate Change (IPCC). As 
Peter Guttorp pointed out in the Annual Review of  
Statistics and Its Applications, only four out of 750 
listed authors of the IPCC report are statisticians, 
and “extreme value theory is mentioned in just one 
place in 542 pages of text.” 

The sources of uncertainty in climate forecasts 
are numerous. First, there are uncertainties in un-
derstanding the past climate—issues of modeling 
measurement error, interpolating sparse measure-
ments taken at only a few places around the world, 
and reconciling measurements made with different 
equipment or methods. 

Second, there are uncertainties in the param-
eters that enter into climate models. The models 
themselves are deterministic and based on the laws 
of physics, but they include quantities that scientists 
simply cannot measure—say, for instance, the heat 
capacity of the oceans. In the past, climate scientists 
have “tuned” the parameters of their models so that 
simulations of past climate match the historical re-
cord. This tuning has largely been undocumented 
and not performed in a statistically rigorous fashion. 
Inference of parameters from observed data should 
be a perfect application for Bayesian statistics, but it 
has not been done that way in practice.



28    Statistics and Science – A Report of the London Workshop on the Future of Statistical Sciences

Downscaling is a third source of uncertainty. 
Global climate models are conducted at a very coarse 
scale, and then the results are entered into finer-scale 
regional models to make forecasts on a country level. 
However, it would be better to transfer the whole dis-
tribution of possibilities, not merely a single number, 
from the large-scale model to the smaller one. This is 
called propagating the uncertainty.

Likewise, statisticians can help with what cli-
mate scientists call “detection and attribution”: Is 
an observed change significant, and if so, what is 
causing it? This is a problem in hypothesis testing. 
For example, one question that is puzzling climate 
scientists now is the apparent slowdown in glob-
al warming from 1998 to 2012, which none of the  

climate models really predicted. (As Gabi Hegerl 
said at the workshop, the observations are “uncom-
fortably close to the edge of the distribution.”) Is it 
a random deviation? Is there an exogenous cause 
(e.g., solar activity)? Or is there a flaw in the models? 
Some have suggested that the oceans are absorbing 
more heat than expected, which would mean that the 
models had an incorrect parameter.

The purpose of this long list of uncertainties 
is not to criticize climate science, but to indicate 
the many places where statisticians (the experts in 
uncertainty) can play a greater role. Some of these 
questions may need to be answered by experiment-
ing with the climate models. Unfortunately, the full-
scale computer models are so complicated that it is 
not really possible to run controlled experiments 
with hundreds of trial runs. Instead, it may be pos-
sible to simulate the simulations—in other words, to 
develop simpler “emulators” that predict reasonably 
accurately what the large-scale models will do. “The 
most important thing is to get the climate commu-
nity to do designed experiments,” said Nychka.

“The problem, as I perceive it, is not that cli-
matologists are ignoring statisticians, but that there 
isn’t a big enough community of statisticians who are 
willing or able to put their energies into addressing 
these problems,” said Richard Smith at the workshop. 
Any statisticians who wish to help will be welcomed 
with open arms, Smith believes, as long as they stay 
focused on actual questions about the climate, rather 
than purely theoretical or methodological issues.

The overheated political climate that surrounds 
global warming has made it more difficult to talk 
openly about the uncertainties in climate models. 
Some climatologists may be reluctant to give their op-
ponents an excuse to ignore their message. However, 
failing to take the uncertainty into account would be 
more damaging to the science in the long run. If cli-
mate modelers say that global average temperatures 
will increase by 3 degrees, they are almost certain to 
be wrong. If they say that the increase will be 1.5 to 
4.5 degrees, they have a much better chance of being 
right. The climate skeptics may point to the lower end 
of the confidence interval and say that we have noth-
ing to worry about. But, as Nychka points out, the ac-
tual amount of climate change is just as likely to be at 
the high end of the confidence interval. As the exam-
ple of New Orleans during Hurricane Katrina shows 
us, it is important to be aware of all the possibilities.

3.3 Updating the Randomized  
Controlled Trial
Earlier in this report, the randomized controlled 
trial (RCT) was presented as one of the signature  
contributions of statistics to scientific research.  

Reproducibility: Two Opposing Views
Here are the basic arguments that John Ioannidis used to claim that 
more than half of all scientific discoveries are false, and that Leah Jager 
and Jeffrey Leek used to rebut his claim.

Most Published Discoveries Are False. Suppose that scientists test 
1,000 hypotheses to see if they are true or false. Most scientific hypoth-
eses are expected to be novel, perhaps even surprising, so a priori one 
might expect 90 percent of them to be false. (This number is very much 
open to debate.) Of the 900 false hypotheses, conventional statistical 
analysis, using a p-value of 5 percent, will result in 45 being declared 
true. Thus one would expect 45 “false positives.” For the 100 true hy-
potheses, the probability of detecting a positive effect is called the “pow-
er” of the experiment. A typical target that medical researchers strive for 
is 80 percent. Thus, Ioannidis argued, 80 of the 100 true hypotheses will 
be declared true. These are “true positives.” Both the false and true posi-
tives are presented as “discoveries” in the scientific literature. Thus, 45 
out of 125 (36 percent) published discoveries will actually be false. If the 
a priori likelihood of a hypothesis being true is smaller, or if the power 
is lower, then the false discovery rate could be more than 50 percent, 
hence the title of Ioannidis’ paper.

Most Published Discoveries Are True. Like Ioannidis’ paper, Jager 
and Leek’s estimate was not based on evaluating the actual scientific 
merit of any papers. However, it did go a step beyond Ioannidis in the 
sense that it was based on empirical data. They reasoned that for the 
false hypotheses, the p-value should simply be a random number be-
tween 0 and 1. On the other hand, for the true hypotheses, they argued 
that the p-values should follow a distribution skewed toward zero, called 
a beta-distribution. They collected all the p-values reported in every ab-
stract published in five major medical journals over a 10-year span and 
computed which distribution best matched the p-values they found. The 
result was a mix of 14 percent false positives, 86 percent true positives. 
Hence, they concluded, about 86 percent of published discoveries in 
those five journals are true, with only 14 percent false.

Section 3. Current Trends and Future Challenges in Statistics: Other Topics
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Nevertheless, some weaknesses of the RCT have be-
come apparent—indeed, have been apparent for a 
long time. It’s only natural for a 65-year-old innova-
tion to become a little bit shopworn and to require 
an upgrade.

In this section, we will describe two recently 
tested experimental designs that are quite different 
from one another, but both address limitations of the 
conventional RCT design. The two stories, somewhat 
confusingly, share one word in common. The two de-
signs are adaptive clinical trials and “SMART trials,” 
which are designed to study adaptive interventions. 
To lessen the confusion, we will use another term 
that has appeared in the literature—“dynamic treat-
ment allocation”—instead of “adaptive intervention.”

An adaptive clinical trial is one whose experi-
mental conduct can change as the trial progresses, 
provided that the changes are determined by a well-
documented protocol. Typical adaptations include 
stopping a trial entirely if a treatment proves to be 
extremely successful or unsuccessful, or eliminating 
the less successful therapies in a multi-armed trial. 
It is worth noting that any such modifications have 
to be done in a way that is planned before the trial 
begins, otherwise the data may be subject to selec-
tion bias. A more sophisticated type of adaptive 
study can change incrementally. If a particular treat-
ment is seen to be more successful than another one 
early in the trial, the probability of new patients be-
ing enrolled in the more promising therapy can be 
gradually increased. This makes sense both from a 
humanitarian and a scientific point of view. Alterna-
tively, it may turn out that certain groups of patients 
respond to one treatment better than other groups 
do. If so, this information can also be used to guide 
the assignment of new patients. In effect, the trial can 
generate new hypotheses on the fly.

Unfortunately, such adaptations are difficult 
to incorporate into a traditional RCT, in which the 
experimenters are not allowed to see any data while 
the experiment is in progress. This precaution, called 
“blinding,” has proved to be an important safeguard 
against experimenter bias. However, with careful 
advance planning, an adaptive trial can likewise be 
blinded. For example, the decisions can be made au-
tomatically by a computer program, programmed in 
advance with instructions on how to modify the trial 
under various contingencies. The computing algo-
rithm is allowed to see the incoming data, but the 
experimenters do not. 

The analysis of an adaptive trial is likewise more 
demanding than a traditional RCT. The probability 
distribution of the experimental outcomes under 
various hypotheses can’t be taken out of a textbook; it 
has to be determined through thousands of comput-
er simulations. The simulations allow the researchers 
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to estimate, for example, the chances that one drug 
will go on a “lucky streak” and be assigned to more 
patients than it deserves. In the era before big com-
puters, such large-scale simulations were unfeasible, 
and it made sense for scientists to use conceptually 
simpler RCT designs with no adaptation. But in the 
21st century, there is no reason, except for tradition, 
to stick to classical methods. 

In the first large-scale adaptive trial, called 
I-SPY 2, Don Berry  and co-investigator Laura  
Esserman simultaneously studied the effectiveness 
of five breast cancer drugs made by different manu-
facturers on 10 subpopulations of cancer patients. By 
the end of 2013, they had identified two drugs with a 
high probability of success in a Phase III study. One 
drug, called veliparib, was effective against triple-
negative breast cancer; the other, called neratinib, 
showed promise against HER2-positive, estrogen-
negative, and progesterone-negative cancers. 

“Adaptive design is like driving a car with your 
eyes open,” wrote Berry in 2010. “However, the driv-
er is an automaton that, for example, is programmed 
to turn around when coming to what the results of 
the trial indicate is a dead end.”

A different set of issues is addressed by dynamic 
treatment allocation. In many drug studies that deal 
with an acute illness, the treatment consists of the 
administration of one drug for a defined length of 
time. Such treatments are well suited for analysis 
with a classic RCT design. However, in chronic ill-
nesses or behavioral disorders such as alcoholism or 
ADD, a clinical intervention takes place over a much 
longer period and may involve several steps. Also, 
the patient population for mental disorders is quite 
heterogeneous. Some treatments may work for some 
patients and not for others. An intervention that 
works in one patient for a while may stop working. 
Thus, researchers on such disorders are interested 
in questions like these: What treatment should I try 

The problem, as I perceive it, is not that climatolo-
gists are ignoring statisticians, but that there isn’t a 
big enough community of statisticians who are  
willing or able to put their energies into addressing 
these problems…
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first? How can I decide if the treatment is not work-
ing? If it is not working, what is the best option to 
try next—perhaps increase the intensity of that treat-
ment, or try a completely different one?

These questions call for a different study design, 
called a SMART design. (SMART stands for Sequen-
tial Multiple Assignment Randomized Trial.) As  
Susan Murphy explained at the workshop, a SMART 
is similar to a factorial design (an experiment with 
two or more treatments, each with two or more dos-
age levels), but it involves an additional time compo-
nent. This allows the researcher to answer some new 
kinds of questions. He or she can investigate not only 
whether intervention A is better than intervention 
B, but also whether A followed by B might be better 
than both of them.

A conventional RCT investigates only one “deci-
sion point” in isolation and does not consider for-
mally what might happen next in a patient’s treat-
ment. By contrast, a SMART is a clinical trial with 
more than one decision point and several options at 
each. At each decision point, the patients are re-ran-
domized. The options at each decision point have to 
be clearly stated in advance. The decisions are based 
on observed variables, and the decision rules (which 
may be deterministic or probabilistic) must also be 
prescribed in advance. 

At present, SMART studies have been conducted 
or are in progress for treatments of autism, ADHD, 
drug and alcohol abuse, and depression. Murphy, a 
MacArthur Foundation Fellow, reported on a study 
of autistic patients that she had consulted on that 

showed (counter to expectations) that giving autistic 
patients an iPad over a period of several weeks im-
proved their ability to form spontaneous utterances.

Because adaptive trials and dynamic treatment 
allocation sound so similar (even statisticians get 
confused), it is worth highlighting the differences. 
First, adaptive trials are an experimental design, 
which is a statistical concept. Dynamic treatment al-
location is a medical (not statistical) concept, which 
calls for a different experimental design (a SMART). 
In adaptive trials, the trial itself evolves: The decision 
rules change and the treatment of later patients is af-
fected by the results of earlier patients. In SMARTs, 
the decision rules are static and each individual pa-
tient’s treatment evolves. The adaptive decisions de-
pend on the patient’s own previous history, not the 
history of other patients.

In spite of their differences, one comment seems 
applicable to both of these innovations. Whenever 
statisticians introduce a new method, such as a new 
experimental design, they will have to make a con-
vincing case to their collaborators, to funding agen-
cies, and to journals. In medicine, lives and money 
are at stake, so all of the above stakeholders tend to 
be conservative. To overcome this natural caution, 
Murphy and Berry both emphasized the importance 
of learning to communicate with the medical experts 
in their own language. 

3.4 Statistics versus Conventional 
Wisdom
While “big science” and Big Data” tend to garner 
more attention, the Workshop on the Future of  
Statistical Sciences also showcased some less widely 
known applications. Two of these, having to do with 
dietary science and demography, are discussed here.

First, Sue Krebs-Smith and Ray Carroll reported 
on a new method of assessing national dietary pat-
terns, developed at the National Cancer Institute, 
called the Healthy Eating Index-2010 (HEI). The 
motivation for coming up with a standard metric of 
diet quality is self-evident: Diet plays a significant 
role in many diseases, such as hypertension, diabe-
tes, cancer, and osteoporosis. It has been estimated 
that the United States spent $147 billion in 2008 on 
medical care for obesity-related diseases. To answer 
questions such as “What are we doing?” and “What 
could we do better?” we need to compare our diets 
with an objective standard.

However, it’s hard to sum up the quality of our 
diet in a single number, because there are many com-
ponents to a healthy diet. The HEI scores diets on 12 
components (e.g., total fruit and total vegetables (for 
these, a higher intake is better), sodium, and empty 
calories (for which a smaller intake is considered 
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Susan Murphy speaking about statistics in autism research.
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better). The quantity of calories consumed is also an 
important factor, but it is not a category in the HEI. 
Instead, each of the variables is evaluated relative to 
the total number of calories consumed (e.g., cups of 
green vegetables per 1,000 calories). This makes it 
possible not only to compare individuals, but also to 
compare producers, markets, restaurants, and other 
points along the food supply chain.

The HEI poses some interesting challenges to a 
statistician. For example, the 12 categories in the HEI 
are all converted to a numerical rating (say, a number 
from 0 to 5). The distribution of scores in most of the 
categories is highly skewed. For six of the categories, 
zero is the most common response, a situation that is 
common enough in statistics that there is a name for 
it (a “zero-inflated” probability distribution).

Another serious issue is measurement error. 
Nutritionists would really like to understand the 
usual, everyday intake of individuals. Unfortunate-
ly, it is not possible to follow someone and observe 
every meal (and midnight snack) for weeks on end. 
Nor can most people accurately answer a question 
about the average amount of green vegetables they 
consume in a day. Thus, nutritionists typically rely on 
interviewers probing a person about their intake just 
in the last 24 hours. Most people can answer such 
questions in great detail. The problem is that a per-
son’s last 24 hours may not be typical. The intake of 
some foods, such as fish, varies a great deal from day 
to day and is often zero. This adds additional uncer-
tainty (within-person variation) to the data, and it 
also accounts for the tendency of certain scores to 
cluster around zero.

In a rare “good news” moment about American 
eating patterns, Carroll showed that the biases intro-
duced by the 24-hour recall studies had led nutrition-
ists to an overly pessimistic conclusion. It appeared 
that 25 percent of children in the United States had 
HEI scores of 40 or below, a score that Krebs-Smith 
once called “alarmingly bad” from a nutritional point 
of view. However, when Carroll statistically corrected 
the HEI scores for measurement bias and zero-infla-
tion effects, he found that only 8 percent of youngsters 
had such an “alarmingly bad” diet.

Future projects for the National Cancer Institute 
include correlating HEI scores to health outcomes 
and cluster analysis to determine if identifiable sub-
groups of the population have consistent problems 
with their diet. One exciting prospect on the hori-
zon is the use of cell phones to replace interviewer-
administered questionnaires. Volunteers can now be 
asked to photograph every meal they eat, not just for 
one day, but for a whole month. A computer program 
can then convert the photographs to HEI scores. This 
has the potential to improve the quality of data com-
pared to the 24-hour recall questionnaires. Over the 

long term, it’s conceivable that nutritionists will be 
able to follow the changes in a person’s diet and the 
health consequences from cradle to grave. 

In another example from the London work-
shop, Adrian Raftery shared his experience working 
on world population for the United Nations. Every 
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Moderator Sastry Pantula looks on while Sue Krebs-Smith responds to 
questions about her presentation on the use of statistics in evaluating 
dietary patterns

Participants discuss one of the many presentations at the London workshop.
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two years, the UN publishes a projection of future 
population trends in every country of the world.  
Governments and social planners around the world 
use this information to, say, plan the number of 
schools that need to be built or to project how  
many retirees will need to be supported by govern-
ment pensions. 

In the first decade of this century, projections 
had shown that the world’s population might level off 
at about 9 billion people by mid-century. However, 
the new forecast by the United Nations Population  
Division, using statistical methods developed by Raf-
tery and his colleagues (including Patrick Gerland of 
the United Nations) shows that the supposed leveling-
off is in fact unlikely to happen. Raftery’s research 
forecasts a population of 9 to 13 billion by the year 
2100. This is the first time the world’s population has 

been forecasted by a major agency using a statistical 
method that explicitly incorporates uncertainty. 

The UN’s previous method, used in its publi-
cation World Population Prospects through 2008, is 
completely deterministic. It gathers data on the cur-
rent population of each country by age and sex and 
on fertility, migration, and mortality rates. It then 
projects future country-wide trends in total fertility 
rate and life expectancy, using empirically observed 
functions that agree with historical data. Most no-
tably, the fertility rate in all countries has followed 
a broadly similar pattern. Prior to industrial devel-
opment, fertility rates are very high (4 to 8 children 
per woman). As the nation develops, it goes through 
a “fertility transition,” a rapid decrease in the fer-
tility to below the replacement rate of 2.1 children 
per woman. Finally, in certain countries (mostly in  
Europe), a third phase of gradual recovery toward 
the replacement rate has been observed. (It remains 
controversial whether this same pattern will hold for 
all countries.) After these historical trends, adapted 
to each country, have been used to project the total 
life expectancy and mortality rate, another deter-
ministic calculation converts these overall rates to 
distinct rates within each five-year age cohort.

As this report has already pointed out several 
times, a prediction without uncertainty estimates 
has a nearly 100 percent chance of being wrong. As a 
nod to uncertainty, the UN publication also includes 
“high” and “low” estimates for each country. How-
ever, these are not based on any sort of probabilistic 
method. Instead, the UN simply re-computes the 
deterministic forecast, using fertility rates one-half 
child higher (for the high estimate) and one-half child 
lower (for the low estimate). As Raftery has shown, 
this non-probabilistic method tends to overstate the 
uncertainty for countries that have completed the fer-
tility transition, while understating the uncertainty for 
countries that are near the beginning of the transition. 
UN demographers realized that the existing method 
was not adequate and invited Raftery to help them 
develop a probabilistic alternative.

The new method is based on Bayesian hierar-
chical models for fertility and mortality. The idea is 
to treat the total fertility rate and life expectancy as 
random variables that have a certain probability of 
going up in a given year and a certain probability of 
going down. For a country going through the fertil-
ity transition, the overall trend in the fertility rate is 
down, but there can be upward or downward blips 
due to random events such as war, famine, or eco-
nomic booms or busts. The model is called “hier-
archical” because the forecast for one country uses 
past information from other countries. The model is 
estimated using Markov chain Monte Carlo methods 
(see §1.3). 

Why Bias Matters
Abraham Wald, an Austrian statistician, fled his native country in 1938 
and subsequently contributed to the U.S. effort in World War II as a 
member of the Statistical Research Group (which eventually became 
part of the Center for Naval Analyses). One of his projects was to es-
timate the survival rates of aircraft that had been shot in various lo-
cations. The data Wald was given showed, for instance, that returning 
aircraft were riddled with bullet holes to the wings but the engines had 
emerged relatively unscathed. Some people might conclude, therefore, 
that the wings needed more reinforcement.

Wald realized that the exact opposite was the case, because he 
thought about the source of his data. The reason that the returning 
planes had few bullet holes in the engine was that the planes that had 
been hit there had crashed. In other words, there was a strong sampling/
selection bias. The data did not come from a random sample of all the 
airplanes that had flown, but only the planes that had survived. Those 
planes by definition had less serious, non-fatal damage. Thus, he argued, 
the most important place to reinforce the hull was precisely the engine.

The above account (a Wikipedia version) considerably oversimpli-
fies what Wald actually did. The data were not so black and white; about 
half of the planes shot in the engine area did make it back somehow. He 
constructed a statistical model that allowed him to infer the most likely 
survival rates of planes based on the number and location of hits, in ef-
fect filling in the missing data on the planes that had crashed.

Nevertheless, the “Wikipedia version” of the story illustrates very 
clearly the value of a good statistician. It also shows that if the data are 
collected in a biased manner, the story they appear to be telling may be 
diametrically opposed to the story they are actually telling.
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There are two reasons that the new estimates 
came out with a higher population than before. The 
first is that the fertility rate in Africa is not decreasing 
as fast as had been assumed based on the experiences 
in Asia and Latin America in the past 60 years. The 
second is the use of the Bayesian hierarchical model, 
which incorporates recent data more directly and 
fully than the previous deterministic, assumption-
driven approach. The United Nations issued its first 
fully probabilistic projections, using Raftery’s meth-
od, on an experimental basis in 2012. It is consider-
ing the adoption of the probabilistic method for its 
official projections beginning in 2014.

Both of the above case studies illustrate how ef-
fective statistical reasoning can be for persuading sub-
ject matter experts to reconsider the conventional wis-
dom in their fields. In the first example, nutritionists 
had not properly appreciated the way that their data 
gathering method (the 24-hour recall questionnaires) 
had biased their statistics. The conventional wisdom 
turned out to be too pessimistic. In the second exam-
ple, demographers did not realize how their determin-
istic projections had misled them about the amount 
of uncertainty. In this case, the conventional wisdom 
turned out to be too optimistic.  ❖
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The Workshop on the Future of Statistics did 
not end with a formal statement of conclu-
sions or recommendations. However, the fol-

lowing unofficial observations may suffice:

1.	 The analysis of data using statistical methods 
is of fundamental importance to society. It 
underpins science, guides business decisions, 
and enables public officials to do their jobs.

2.	 All data come with some amount of uncer-
tainty, and the proper interpretation of data in 
the context of uncertainty is by no means easy 
or routine. This is one of the most important 
services that statisticians provide to society.

3.	 Society is acquiring data at an unprecedent-
ed and ever-increasing rate. Statisticians 
should be involved in the analysis of these 
data.

4.	 Statisticians should be cognizant of the 
threats to privacy and confidentiality that 
Big Data pose. It will remain a challeng-
ing problem to balance the social benefits 
of improved information with the potential 
costs to individual privacy.

5.	 Data are coming in new and untraditional 
forms, such as images and networks. Con-
tinuing evolution of statistical methods will 
be required to handle these new types of data.

6.	 Statisticians need to re-evaluate the train-
ing of students and the reward system with-
in their own profession to make sure that 
these are still functioning appropriately in a 
changing world.

7.	 In particular, statisticians are grappling 
with the question of what a “data scientist” 
is, whether it is different from a statistician, 
and how to ensure that data scientists don’t 
have to “reinvent the wheel” when they con-
front issues of uncertainty and data quality.

8.	 In a world where the public still has many 
misperceptions about statistics, risk, and 
uncertainty, communication is an impor-
tant part of statisticians’ jobs. Creative solu-
tions to data visualization and mass com-
munication can go a long way.

We conclude with some observations on statisti-
cal education, which was a major topic of discussion 
at the London workshop, even though there were no 
formal lectures about it.

In the United States, the number of statistics 
degrees and the enrollment in introductory statis-
tics courses is increasing robustly. The numbers of 
bachelor’s and master’s degrees awarded in statistics 
have both roughly doubled in the last 10 years. The 
representation of women in statistics programs is 
much better than it is in comparable disciplines such 
as mathematics, physics, and engineering. At the 
undergraduate level, enrollment in introductory sta-
tistics courses has gone up by 90 percent from 1995  
to 2010. 

Clearly, some students are getting the message 
that statistics is a useful major, and many of them are 
undoubtedly attracted by the job possibilities. How-
ever, statistics departments need to do a better job of 
preparing them for the jobs that are actually available 
and not necessarily to become carbon copies of the 
professors. Some suggestions include the following:

SECTION 4. 
Conclusion
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•	 Working on communication skills. Statisti-
cians have a deep understanding and famil-
iarity with the concept of uncertainty that 
many other scientists lack. They will only be 
able to disseminate their knowledge of this 
critical concept if they can convey it readily 
and with ease.

•	 Working on team projects, especially with 
non-statisticians. The workshop itself mod-
eled this behavior, as most of the speakers 
who were statisticians were paired with a 
non-statistician who is an expert in the sub-
ject-matter area under discussion. In most 
cases, the two speakers were collaborators. 

•	 Training on leadership skills. There was a 
strong sentiment among some workshop 
participants that statisticians are pigeon-
holed as people who support the research of 
others, rather than coming up with original 
ideas themselves.

•	 Strong training in an application field. This 
again may help prepare the students to steer 
the direction of research, rather than fol-
lowing it.

•	 More exposure to real “live” data. Many stu-
dents will learn best if they can see the ap-
plicability to real-world problems. 

•	 More exposure to Big Data, or at least reason-
ably Big Data that cannot be analyzed using 
traditional statistical methods or on a single 
computer. Students need to be prepared for 
the world that they will be entering, and Big 
Data seems to be here to stay.

•	 More emphasis on computer algorithms, 
simulation, etc. To prepare for engineering-
type jobs, students need to learn to think 
like engineers.

At the high-school level in the United States, 
there is also good news and bad news. The Advanced 
Placement course in statistics has grown rapidly in 
popularity and increased the awareness of statistics 
in high schools. There is absolutely no reason why 
high-school students cannot have rewarding experi-
ences in statistics. The relevance of statistics to real 
life is much more readily apparent than most other 
high-school math courses. However, as Richard De 
Veaux observed, “Statistics education remains mired 
in the 20th (some would say the 19th) century.” As 
Big Data changes statistics, statistical education will 
also have to change.

As for the situation of statistics education out-
side of North America and Europe, there was not 
enough expertise present at the London workshop 
to draw any conclusions. However, we will end the 
report with one anecdotal comment.

I am still amazed by the power of statistics. … Be-
cause of statistics, we are able to have a glimpse of 
the future, to understand …



36    Statistics and Science – A Report of the London Workshop on the Future of Statistical Sciences

In advance of the workshop, the organizing 
committee invited written comments not only from 
people who had been invited to attend the workshop, 
but also from anyone else who wanted to send one. 
One non-participant comment came from a student 
named Nilrey Cornites, who had just completed his 
undergraduate degree in statistics in the Philippines. 
This student’s (mildly edited) response could serve as 
an inspiration to all statisticians.

“During my elementary and secondary educa-
tion, I never knew anything about statistics. … In my 

Section 4. Conclusion

first year in college, I was enrolled in BS mathematics 
and there I appreciated the beauty of statistics in our 
introduction to statistics class. I was so in love with 
statistics that I shifted to statistics as my major.

“I am still amazed by the power of statistics. … 
Because of statistics, we are able to have a glimpse of 
the future, to understand … the significant effect of 
a new product or medicine, and to understand the 
weather. Statistics saves lives, lowers the cost, helps 
ensure success, and improves things and processes.

“In the Philippines, most of the people and even 
companies and government or non-government 
agencies don’t yet appreciate statistics as a very pow-
erful and reliable quantitative tool to help them in 
their decisionmaking, because they don’t even know 
what is statistics and its function. 

“And as a young dreamer to become a full-
fledged statistician in the future, I know that in the 
very near future they will seek after me, seek after 
us (statisticians) asking for our assistance. … We 
are the future tellers [emphasis added] and someday 
they will flock to us to see their future. … I am a very 
proud young statistician.”

This student has laid out a very ambitious goal 
and a daunting responsibility for statisticians. If stat-
isticians are to be the future tellers, they must stay 
humble, always presenting uncertainty as an integral 
part of their forecasts. They need to be willing to tell 
unpopular truths. They need to be ingenious and in-
novative in taking advantage of new technology and 
new sources of information. All of these things are 
part of the history of statistics, and, with any luck, 
they will also be part of its future.  ❖

Statistics is a vital component to cancer research. High school student 
Shannon Hunt illustrated this artistically in her photo, the winning entry 
in the Statistics2013 Photo Contest.
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